Skip to main content
Log in

Persistent Endocrine-Disrupting Chemicals and Fatty Liver Disease

  • Synthetic Chemicals and Health (J Herbstman and T James-Todd, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Non-alcoholic fatty liver disease (NAFLD) is the most prominent chronic liver disease in Western countries, affecting approximately 25% of the population worldwide. Sex-specific differences in the development of NAFLD are apparent. While obesity and insulin resistance are major contributors to the increasing prevalence of NAFLD, a growing body of literature suggests that exposure to persistent endocrine-disrupting chemicals (pEDCs) may also play a role. This review summarizes recent (2011 and later) scientific literature investigating exposures to pEDCs, specifically persistent organic pollutants (POPs), and NAFLD, with a focus on sex-specific associations.

Recent Findings

The overwhelming majority of studies were conducted in single-sex animal models and provide biological evidence that exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin polychlorinated biphenyls, and other POPs or POP mixtures are negatively associated with liver health. There were four cross-sectional epidemiological studies in humans that reported associations for several POPs, including polychlorinated biphenyls and perfluorinated chemicals, with elevated liver enzymes. Only one of these studies, using a sample of gastric bypass surgery patients, examined sex-specific associations of POPs and liver enzymes, finding adverse associations among women only. The noticeable lack of studies investigating how differences (i.e., biochemical, physiological, and behavioral) between men and women may influence associations of pEDCs and NAFLD represents a large research gap in environmental health. Sexual dimorphism in metabolic processes throughout the body, including the liver, is established but often overlooked in the designs and analyses of studies. Other factors identified in this review that may also act to modulate associations of environmental chemicals and NAFLD are reproductive status and dietary nutrient intakes, which also remain understudied in the literature.

Summary

Despite knowledge of sexual dimorphism in the actions of pEDCs, as well as in metabolic processes related to NAFLD development, few experimental or epidemiological studies have investigated sex-dependent associations. Future studies, especially those in humans, should be designed to address this research need. Consideration of other factors, such as reproductive status, dietary intakes, and mixtures of chemicals with varying endocrine-disrupting capabilities, should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AhR:

Aryl hydrocarbon receptor

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BDE:

Brominated diphenyl ethers

DDE:

p,p′-Dichlorophenyldichloroethylene

DDT:

Dichlorodiphenyltrichloroethanes

pEDC:

Persistent endocrine-disrupting chemical

GGT:

Gamma glutamyl transferase

HCB:

Hexachlorobenzene

HBCD:

Hexabromocyclododecane

NAFLD:

Non-alcoholic fatty liver disease

NHANES:

National Health and Nutrition Examination Surveys

POP:

Persistent organic chemicals

PCB:

Polychlorinated biphenyls

PFC:

Perfluorinated chemicals

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctanesulfonic acid

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Joshi-Barve S, Kirpich I, Cave MC, Marsano LS, McClain CJ. Alcoholic, nonalcoholic, and toxicant-associated steatohepatitis: mechanistic similarities and differences. Cell Molec Gastroenterol Hepatol. 2015;1(4):356–67.

    Article  Google Scholar 

  2. Younossi ZM, Stepanova M, Afendy M, Fang Y, Younossi Y, Mir H, et al. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol. 2011;9(6):524–30.

    Article  PubMed  Google Scholar 

  3. • Ballestri S, Nascimbeni F, Baldelli E, Marrazzo A, Romagnoli D, Lonardo A. NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv Ter. 2017;34:1291–326. This review examines the evidence supporting NAFLD as a sex- and reproductive status-dependent disease, including discussion of the role of sex hormones and lifestyle behaviors

    Google Scholar 

  4. Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;307:74–88.

    Article  CAS  PubMed  Google Scholar 

  5. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33. This review provides a detailed examination of the evidence linking endocrine disrupting environmental chemical exposures to metabolic diseases, including obesity, type 2 diabetes, and NAFLD. The role of exposures during critical periods of development are also discussed

    Article  CAS  PubMed  Google Scholar 

  7. Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive system. Environ Toxicol Pharmacol. 2017;51:56–70.

    Article  CAS  PubMed  Google Scholar 

  8. Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. 2017;13(3):161–73.

    Article  CAS  PubMed  Google Scholar 

  9. • Mimoto MS, Nadal A, Sargis RM. Polluted pathways: mechanisms of metabolic disruption by endocrine disrupting chemicals. Curr Environ Health Rep 2017; 4(2):1–15. This review focuses on the molecular and cellular mechanisms underlying the associations between environmental chemicals and metabolic health outcomes, specifically diabetes.

  10. Van den Berg M, De Jongh J, Poiger H, Olson JR. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity. Crit Rev Toxicol. 1994;24(1):1–74.

    Article  PubMed  Google Scholar 

  11. Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, et al. Toxicant-associated steatohepatitis. Toxicol Pathol. 2013;41(2):343–60.

    Article  PubMed  Google Scholar 

  12. Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010;103(2):71–83.

    Article  CAS  PubMed  Google Scholar 

  13. Wahlang B, Song M, Beier JI, Falkner KC, Al-Eryani L, Clair HB, et al. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicol Appl Pharmacol. 2014;279(3):380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arrebola JP, Pumarega J, Gasull M, Fernandez MF, Martin-Olmedo P, Molina-Molina JM, et al. Adipose tissue concentrations of persistent organic pollutants and prevalence of type 2 diabetes in adults from Southern Spain. Environ Res. 2013;122:31–7.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Prokopec SD, Watson JD, Sun RX, Pohjanvirta R, Boutros PC. Male and female mice show significant differences in hepatic transcriptomic response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. BMC Genomics. 2015;16(1):625.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pohjanvirta R, Miettinen H, Sankari S, Hegde N, Lindén J. Unexpected gender difference in sensitivity to the acute toxicity of dioxin in mice. Toxicol Appl Pharmacol. 2012;262(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  17. Lv Z, Li G, Li Y, Ying C, Chen J, Chen T, et al. Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol. 2013;28(9):532–42.

    Article  CAS  PubMed  Google Scholar 

  18. Rebholz SL, Jones T, Herrick RL, Xie C, Calafat AM, Pinney SM, et al. Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice. Toxicol Rep. 2016;3:46–54.

    Article  CAS  PubMed  Google Scholar 

  19. Naville D, Pinteur C, Vega N, Menade Y, Vigier M, Le Bourdais A, et al. Low-dose food contaminants trigger sex-specific, hepatic metabolic changes in the progeny of obese mice. FASEB J. 2013;27(9):3860–70.

    Article  CAS  PubMed  Google Scholar 

  20. Serdar B, LeBlanc WG, Norris JM, Dickinson LM. Potential effects of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures: a cross-sectional assessment of the NHANES 2003-2004 data. Environ Health. 2014;13(1):114.

    Article  PubMed  PubMed Central  Google Scholar 

  21. • Rantakokko P, Männistö V, Airaksinen R, Koponen J, Viluksela M, Kiviranta H, et al. Persistent organic pollutants and non-alcoholic fatty liver disease in morbidly obese patients: a cohort study. Environ Health. 2015;14:79. This is the only epidemiological study identified in this review that investigated sex-specific associations of POPs and NAFLD

    Article  PubMed  PubMed Central  Google Scholar 

  22. Christensen KLY, Carrico CK, Sanyal AJ, Gennings C. Multiple classes of environmental chemicals are associated with liver disease: NHANES 2003–2004. Int J Hyg Environ Health. 2013;216(6):703–9.

    Article  Google Scholar 

  23. Gleason JA, Post GB, Fagliano JA. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007–2010. Environ Res. 2015;136:8–14.

    Article  CAS  PubMed  Google Scholar 

  24. Angrish MM, Dominici CY, Zacharewski TR. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice. Toxicol Sci. 2013;131(1):108–15.

    Article  CAS  PubMed  Google Scholar 

  25. Angrish M, Mets B, Jones A, Zacharewski T. Dietary fat is a lipid source in 2, 3, 7, 8-tetrachlorodibenzo-ρ-dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice. Toxicol Sci. 2012;128(2):377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kakizuka S, Takeda T, Komiya Y, Koba A, Uchi H, Yamamoto M, et al. Dioxin-produced alteration in the profiles of fecal and urinary metabolomes: a change in bile acids and its relevance to toxicity. Biol Pharm Bull. 2015;38(10):1484–95.

    Article  CAS  PubMed  Google Scholar 

  27. Lefever DE, Xu J, Chen Y, Huang G, Tamas N, Guo TL. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice. Toxicol Appl Pharmacol. 2016;304:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma J, Chen X, Liu Y, Xie Q, Sun Y, Chen J, et al. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: methylation status and DNMTs. Toxicol Appl Pharmacol. 2015;289(2):193–202.

    Article  CAS  PubMed  Google Scholar 

  29. Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X. The aryl hydrocarbon receptor system. Drug Metabol Drug Interact. 2012;27(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  30. Matsubara T, Tanaka N, Krausz KW, Manna SK, Kang DW, Anderson ER, et al. Metabolomics identifies an inflammatory cascade involved in dioxin-and diet-induced steatohepatitis. Cell Metab. 2012;16(5):634–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lamb CL, Cholico GN, Perkins DE, Fewkes MT, Oxford JT, Lujan TJ, et al. Aryl hydrocarbon receptor activation by TCDD modulates expression of extracellular matrix remodeling genes during experimental liver fibrosis. Biomed Res Int. 2016;2016:5309328.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lamb CL, Cholico GN, Pu X, Hagler GD, Cornell KA, Mitchell KA. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice. Toxicol Appl Pharmacol. 2016;311:42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pierre S, Chevallier A, Teixeira-Clerc F, Ambolet-Camoit A, Bui LC, Bats AS, et al. Aryl hydrocarbon receptor-dependent induction of liver fibrosis by dioxin. Toxicol Sci. 2014;137(1):114–24.

    Article  CAS  PubMed  Google Scholar 

  34. Nault R, Fader KA, Kopec AK, Harkema JR, Zacharewski TR, Luyendyk JP. From the cover: coagulation-driven hepatic fibrosis requires protease activated receptor-1 (PAR-1) in a mouse model of TCDD-elicited steatohepatitis. Toxicol Sci. 2016;154(2):381–91.

    Article  CAS  PubMed  Google Scholar 

  35. Nault R, Fader KA, Ammendolia DA, Dornbos P, Potter D, Sharratt B, et al. Dose-dependent metabolic reprogramming and differential gene expression in TCDD-elicited hepatic fibrosis. Toxicol Sci. 2016;154(2):253–66.

    Article  CAS  PubMed  Google Scholar 

  36. Shan Q, Huang F, Wang J, Du Y. Effects of co-exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls on nonalcoholic fatty liver disease in mice. Environ Toxicol. 2015;30(12):1364–74.

    Article  CAS  PubMed  Google Scholar 

  37. Shan Q, Wang J, Huang F, Lv X, Ma M, Du Y. Augmented atherogenesis in ApoE-null mice co-exposed to polychlorinated biphenyls and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 2014;276(2):136–46.

    Article  CAS  PubMed  Google Scholar 

  38. Fader KA, Nault R, Ammendolia DA, Harkema JR, Williams KJ, Crawford RB, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters lipid metabolism and depletes immune cell populations in the jejunum of C57BL/6 mice. Toxicol Sci. 2015;148(2):567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ambolet-Camoit A, Ottolenghi C, Leblanc A, Kim MJ, Letourneur F, Jacques S, et al. Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2, 3, 7, 8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Biochimie. 2015;116:79–91.

    Article  CAS  PubMed  Google Scholar 

  40. Harvey WA, Jurgensen K, Pu X, Lamb CL, Cornell KA, Clark RJ, et al. Exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) increases human hepatic stellate cell activation. Toxicology. 2016;344:26–33.

    Article  PubMed  Google Scholar 

  41. He J, Hu B, Shi X, Weidert ER, Lu P, Xu M, et al. Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3. Mol Cell Biol. 2013 May;33(10):2047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duval C, Teixeira-Clerc F, Leblanc AF, Touch S, Emond C, Guerre-Millo M, et al. Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model. Environ Health Perspect. 2017;125(3):428–36.

    PubMed  Google Scholar 

  43. Palanisamy K, Krishnaswamy R, Paramasivan P, Chih-Yang H, Vishwanadha VP. Eicosapentaenoic acid prevents TCDD-induced oxidative stress and inflammatory response by modulating MAP kinases and redox-sensitive transcription factors. Br J Pharmacol. 2015;172(19):4726–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turkez H, Geyikoglu F, Yousef MI. Ameliorative effects of docosahexaenoic acid on the toxicity induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in cultured rat hepatocytes. Toxicol Ind Health. 2016;32(6):1074–85.

    Article  CAS  PubMed  Google Scholar 

  45. Kalaiselvan I, Samuthirapandi M, Govindaraju A, Sheeja Malar D, Kasi PD. Olive oil and its phenolic compounds (hydroxytyrosol and tyrosol) ameliorated TCDD-induced heptotoxicity in rats via inhibition of oxidative stress and apoptosis. Pharm Biol. 2016;54(2):338–46.

    Article  CAS  PubMed  Google Scholar 

  46. Aly HA, El-Shitany NA, El-Beshbishy HA, Ashour OM. Ameliorative effect of lycopene against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced rat liver microsomal toxicity: an in vitro study. Toxicol Ind Health. 2015;31(10):938–50.

    Article  CAS  PubMed  Google Scholar 

  47. Cave M, Appana S, Patel M, Falkner KC, McClain CJ, Brock G. Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003-2004. Environ Health Perspect. 2010;118(12):1735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93(2):223–41.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ede KI, Duursen MB, Berg M. Evaluation of relative effect potencies (REPs) for dioxin-like compounds to derive systemic or human-specific TEFs to improve human risk assessment. Arch Toxicol. 2016;90(6):1293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  50. National Toxicology Program. NTP toxicology and carcinogenesis studies of 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) in female Harlan Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser. 2006;520:4–246.

    Google Scholar 

  51. Chapados NA, Boucher M. Liver metabolic disruption induced after a single exposure to PCB126 in rats. Environ Sci Pollut Res. 2016;24(2):1854–61.

    Article  Google Scholar 

  52. Wu X, Yang J, Morisseau C, Robertson LW, Hammock B, Lehmler HJ. 3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) decreases hepatic and systemic ratios of epoxide to diol metabolites of unsaturated fatty acids in male rats. Toxicol Sci. 2016;152(2):309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gadupudi GS, Klingelhutz AJ, Robertson LW. Diminished phosphorylation of CREB Is a key event in the dysregulation of gluconeogenesis and glycogenolysis in PCB126 hepatotoxicity. Chem Res Toxicol. 2016;29(9):1504–9.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang W, Sargis RM, Volden PA, Carmean CM, Sun XJ, Brady MJ. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS One. 2012;7(5):e37103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baker NA, Karounos M, English V, Fang J, Wei Y, Stromberg A, et al. Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ Health Perspect. 2013;121(1):105–10.

    PubMed  Google Scholar 

  56. Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci. 2016;149(1):98–110.

    Article  CAS  PubMed  Google Scholar 

  57. Boucher M, Lefebvre C, Chapados NA. The effects of PCB126 on intra-hepatic mechanisms associated with non-alcoholic fatty liver disease. J Diabetes Metab Disord. 2015;14(1):88.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yadetie F, Oveland E, Døskeland A, Berven F, Goksøyr A, Karlsen OA. Quantitative proteomics analysis reveals perturbation of lipid metabolic pathways in the liver of Atlantic cod (Gadus morhua) treated with PCB 153. Aquatic Toxicol. 2017;185:19–28.

    Article  CAS  Google Scholar 

  59. Mesnier A, Champion S, Louis L, Sauzet C, May P, Portugal H, et al. The transcriptional effects of PCB118 and PCB153 on the liver, adipose tissue, muscle and colon of mice: highlighting of Glut4 and Lipin1 as main target genes for PCB induced metabolic disorders. PLoS One. 2015;10(6):e0128847.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shi X, Wahlang B, Wei X, Yin X, Falkner KC, Prough RA, et al. Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease. J Proteome Res. 2012;11(7):3805–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wahlang B, Falkner KC, Gregory B, Ansert D, Young D, Conklin DJ, et al. Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem. 2013;24(9):1587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wahlang B, Prough RA, Falkner KC, Hardesty JE, Song M, Clair HB, et al. Polychlorinated biphenyl-xenobiotic nuclear receptor interactions regulate energy metabolism, behavior, and inflammation in non-alcoholic-steatohepatitis. Toxicol Sci. 2016;149(2):396–410.

    Article  CAS  PubMed  Google Scholar 

  63. VoPham T, Bertrand KA, Hart JE, Laden F, Brooks MM, Yuan J, et al. Pesticide exposure and liver cancer: a review. Cancer Causes Control. 2017;28(3):177–90.

    Article  PubMed  Google Scholar 

  64. Harada T, Takeda M, Kojima S, Tomiyama N. Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicol Res. 2016;32(1):21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodríguez-Alcalá LM, Sá C, Pimentel LL, Pestana D, Teixeira D, Faria A, et al. Endocrine disruptor DDE associated with a high-fat diet enhances the impairment of liver fatty acid composition in rats. J Agric Food Chem. 2015;63(42):9341–8.

    Article  PubMed  Google Scholar 

  66. Howell GE, Mulligan C, Meek E, Chambers JE. Effect of chronic p, p′-dichlorodiphenyldichloroethylene (DDE) exposure on high fat diet-induced alterations in glucose and lipid metabolism in male C57BL/6H mice. Toxicology. 2015;328:112–22.

    Article  CAS  PubMed  Google Scholar 

  67. Maranghi F, Tassinari R, Moracci G, Altieri I, Rasinger J, Carroll T, et al. Dietary exposure of juvenile female mice to polyhalogenated seafood contaminants (HBCD, BDE-47, PCB-153, TCDD): comparative assessment of effects in potential target tissues. Food Chemical Toxicol. 2013;56:443–9.

    Article  CAS  Google Scholar 

  68. Bernhard A, Berntssen MH, Lundebye A, Alvheim AR, Myrmel LS, Fjære E, et al. Marine fatty acids aggravate hepatotoxicity of α-HBCD in juvenile female BALB/c mice. Food Chem Toxicol. 2016;97:411–23.

    Article  CAS  PubMed  Google Scholar 

  69. Yanagisawa R, Koike E, Win-Shwe T, Yamamoto M, Takano H. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health Perspect. 2014;122(3):277–83.

    PubMed  PubMed Central  Google Scholar 

  70. Cantón RF, Peijnenburg AA, Hoogenboom RL, Piersma AH, van der Ven, Leo TM, et al. Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats. Toxicol Appl Pharmacol. 2008;231(2):267–72.

    Article  PubMed  Google Scholar 

  71. Post GB, Cohn PD, Cooper KR. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res. 2012;116:93–117.

    Article  CAS  PubMed  Google Scholar 

  72. Calafat AM, Wong L, Kuklenyik Z, Reidy JA, Needham LL. Polyfluoroalkyl chemicals in the US population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect 2007;115(11):1596–1602.

  73. Huang Q, Zhang J, Martin FL, Peng S, Tian M, Mu X, et al. Perfluorooctanoic acid induces apoptosis through the p53-dependent mitochondrial pathway in human hepatic cells: a proteomic study. Toxicol Lett. 2013;223(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  74. Lau C. Perfluorinated compounds. EXS. 2012;101:47–86.

  75. Fang X, Gao G, Zhang X, Wang H. Perfluorononanoic acid disturbed the metabolism of lipid in the liver of streptozotocin-induced diabetic rats. Toxicol Mech Methods. 2015;25(8):622–7.

    Article  CAS  PubMed  Google Scholar 

  76. Tan X, Xie G, Sun X, Li Q, Zhong W, Qiao P, et al. High fat diet feeding exaggerates perfluorooctanoic acid-induced liver injury in mice via modulating multiple metabolic pathways. PLoS One. 2013;8(4):e61409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mulligan C, Kondakala S, Yang E, Stokes JV, Stewart JA, Kaplan BL, et al. Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls promotes hepatic steatosis in male Ob/Ob mice. Environ Toxicol. 2017;32(4):1399–411.

    Article  CAS  PubMed  Google Scholar 

  78. Mailloux RJ, Florian M, Chen Q, Yan J, Petrov I, Coughlan MC, et al. Exposure to a northern contaminant mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats. PLoS One. 2014;9(9):e106832.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jaacks LM, Staimez LR. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: a systematic review. Environ Int. 2015;76:57–70.

    Article  CAS  PubMed  Google Scholar 

  80. Lee D, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014;35(4):557–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Magliano D, Loh V, Harding J, Botton J, Shaw J. Persistent organic pollutants and diabetes: a review of the epidemiological evidence. Diabetes Metab. 2014;40(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  82. Wu H, Bertrand KA, Choi AL, Hu FB, Laden F, Grandjean P, et al. Plasma levels of persistent organic pollutants and risk of type 2 diabetes: a prospective analysis in the Nurses’ Health Study and meta-analysis. Environ Health Perspect. 2013;121(2):153–61.

    PubMed  Google Scholar 

  83. Polyzos SA, Kountouras J, Deretzi G, Zavos C, Mantzoros SC. The emerging role of endocrine disruptors in pathogenesis of insulin resistance: a concept implicating nonalcoholic fatty liver disease. Curr Mol Med. 2012;12(1):68–82.

    Article  CAS  PubMed  Google Scholar 

  84. Kim M, Marchand P, Henegar C, Antignac J, Alili R, Poitou C, et al. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ Health Perspect. 2011;119(3):377–83.

    Article  CAS  PubMed  Google Scholar 

  85. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9.

    Article  CAS  PubMed  Google Scholar 

  86. Shi H, Seeley RJ, Clegg DJ. Sexual differences in the control of energy homeostasis. Front Neuroendocrinol. 2009;30(3):396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol. 2013;305(11):R1215–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol. 2009;76(2):215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fletcher T, Galloway TS, Melzer D, Holcroft P, Cipelli R, Pilling LC, et al. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Environ Int. 2013;57:2–10.

    Article  PubMed  Google Scholar 

  90. Strakovsky RS, Wang H, Engeseth NJ, Flaws JA, Helferich WG, Pan Y, et al. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis. Toxicol Appl Pharmacol. 2015;284(2):101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Caporossi L, Papaleo B. Exposure to bisphenol A and gender differences: from rodents to humans evidences and hypothesis about the health effects. J Xenobiotics. 2015;5:5264.

    Article  Google Scholar 

  92. Majkova Z, Oesterling E, Toborek M, Hennig B. Impact of nutrition on PCB toxicity. Environ Toxicol Pharmacol. 2008;25(2):192–6.

    Article  CAS  PubMed  Google Scholar 

  93. Hennig B, Ormsbee L, McClain CJ, Watkins BA, Blumberg B, Bachas LG, et al. Nutrition can modulate the toxicity of environmental pollutants: implications in risk assessment and human health. Environ Health Perspect. 2012;120(6):771–4.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hoffman JB, Hennig B. Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Ann N Y Acad Sci. 2017;1398(2017):99–107.

    Article  CAS  PubMed  Google Scholar 

  95. Kortenkamp A. Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int J Androl. 2008;31(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  96. Braun JM, Gennings C, Hauser R, Webster TF. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect. 2016;124(1):A6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Taylor KW, Joubert BR, Braun JM, Dilworth C, Gennings C, Hauser R, et al. Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: lessons from an innovative workshop. Environ Health Perspect. 2016;124(12):A227–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Andrea L. Deierlein is supported by the following grant: NIEHS R00 ES023474-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Deierlein.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Synthetic Chemicals and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deierlein, A.L., Rock, S. & Park, S. Persistent Endocrine-Disrupting Chemicals and Fatty Liver Disease. Curr Envir Health Rpt 4, 439–449 (2017). https://doi.org/10.1007/s40572-017-0166-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0166-8

Keywords

Navigation