Skip to main content
Log in

Second-order visual sensitivity in the aging population

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Most visual and cognitive functions are affected by aging over the lifespan. In this study, our aim was to investigate the loss in sensitivity to different classes of second-order stimuli—a class of stimuli supposed to be mainly processed in extrastriate cortex—in the aging population. These stimuli will then allow one to identify specific cortical deficit independently of visibility losses in upstream parts of the visual pathway. For this purpose, we measured the sensitivity to first-order stimuli and second-order stimuli: orientation-modulated, motion-modulated or contrast-modulated as a function of spatial frequency in 50 aged participants. Overall, we observed a sensitivity loss for all classes of stimuli, but this loss differentially affects the three classes of second-order stimuli tested. It involves all modulation spatial frequencies in the case of motion modulation, but just high modulation spatial frequencies in the case of contrast- and orientation modulations. These observations imply that aging selectively affects the sensitivity to second-order stimuli depending on their type. Since there is evidence that these different second-order stimuli are processed in different regions of extrastriate cortex, this result may suggest that some visual cortical areas are more susceptible to aging effects than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Picture Alexandre Reynaud, wikimedia commons/CC-0

Fig. 2

Adapted from Reynaud et al. [33]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Faubert J (2002) Visual perception and aging. Can J Exp Psychol 56:164–176

    Article  PubMed  Google Scholar 

  2. Owsley C (2016) Vision and aging. Annu Rev Vis Sci 2:255–271

    Article  PubMed  Google Scholar 

  3. Spear PD (1993) Neural bases of visual deficits during aging. Vis Res 33:2589–2609

    Article  CAS  PubMed  Google Scholar 

  4. Martínez-Roda JA, Vilaseca M, Ondategui JC et al (2016) Effects of aging on optical quality and visual function. Clin Exp Optom 99:518–525

    Article  PubMed  Google Scholar 

  5. Owsley C, Sekuler R, Siemsen D (1983) Contrast sensitivity throughout adulthood. Vis Res 23:689–699

    Article  CAS  PubMed  Google Scholar 

  6. Sekuler R, Hutman LP (1980) Spatial vision and aging. I: contrast sensitivity. J Gerontol 35:692–699

    Article  CAS  PubMed  Google Scholar 

  7. Greene HA, Madden DJ (1987) Adult age differences in visual acuity, stereopsis, and contrast sensitivity. Am J Optom Physiol Opt 64:749–753

    Article  CAS  PubMed  Google Scholar 

  8. Habak C, Faubert J (2000) Larger effect of aging on the perception of higher-order stimuli. Vis Res 40(8):943–950

    Article  CAS  PubMed  Google Scholar 

  9. Tang Y, Zhou Y (2009) Age-related decline of contrast sensitivity for second-order stimuli: earlier onset, but slower progression, than for first-order stimuli. J Vis 9:18. https://doi.org/10.1167/9.7.18

    Article  PubMed  Google Scholar 

  10. Jamar JH, Koenderink JJ (1985) Contrast detection and detection of contrast modulation for noise gratings. Vis Res 25:511–521

    Article  CAS  PubMed  Google Scholar 

  11. Schofield AJ, Georgeson MA (1999) Sensitivity to modulations of luminance and contrast in visual white noise: separate mechanisms with similar behaviour. Vis Res 39:2697–2716

    Article  CAS  PubMed  Google Scholar 

  12. Kingdom FA, Keeble D, Moulden B (1995) Sensitivity to orientation modulation in micropattern-based textures. Vis Res 35:79–91

    Article  CAS  PubMed  Google Scholar 

  13. Landy MS, Oruç I (2002) Properties of second-order spatial frequency channels. Vis Res 42:2311–2329

    Article  PubMed  Google Scholar 

  14. Reynaud A, Hess RF (2012) Properties of spatial channels underlying the detection of orientation modulations. Exp Brain Res 220:135–145

    Article  PubMed  Google Scholar 

  15. Meso AI, Hess RF (2010) Visual motion gradient sensitivity shows scale invariant spatial frequency and speed tuning properties. Vis Res 50:1475–1485

    Article  PubMed  Google Scholar 

  16. Watson AB, Eckert MP (1994) Motion-contrast sensitivity: visibility of motion gradients of various spatial frequencies. J Opt Soc Am A 11:496–505

    Article  Google Scholar 

  17. Arsenault AS, Wilkinson F, Kingdom FA (1999) Modulation frequency and orientation tuning of second-order texture mechanisms. J Opt Soc Am A Opt Image Sci Vis 16:427–435

    Article  CAS  PubMed  Google Scholar 

  18. Ellemberg D, Allen HA, Hess RF (2006) Second-order spatial frequency and orientation channels in human vision. Vis Res 46:2798–2803

    Article  PubMed  Google Scholar 

  19. Zavitz E, Baker CL (2013) Texture sparseness, but not local phase structure, impairs second-order segmentation. Vis Res 91:45–55

    Article  PubMed  Google Scholar 

  20. Baker CL (1999) Central neural mechanisms for detecting second-order motion. Curr Opin Neurobiol 9:461–466

    Article  CAS  PubMed  Google Scholar 

  21. Chubb C, Landy M (1991) Orthogonal distribution analysis: a new approach to the study of texture perception. In: Landy M, Movshon J (eds) Computational models of visual processing. MIT Press, Cambridge

    Google Scholar 

  22. Hallum LE, Landy MS, Heeger DJ (2011) Human primary visual cortex (V1) is selective for second-order spatial frequency. J Neurophysiol 105:2121–2131

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kastner S, Weerd PD, Ungerleider LG (2000) Texture segregation in the human visual cortex: a functional MRI study. J Neurophysiol 83:2453–2457

    Article  CAS  PubMed  Google Scholar 

  24. Larsson J, Heeger DJ, Landy MS (2010) Orientation selectivity of motion-boundary responses in human visual cortex. J Neurophysiol 104:2940–2950

    Article  PubMed  PubMed Central  Google Scholar 

  25. Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95:862–881

    Article  PubMed  Google Scholar 

  26. Reppas JB, Niyogi S, Dale AM et al (1997) Representation of motion boundaries in retinotopic human visual cortical areas. Nature 388:175–179

    Article  CAS  PubMed  Google Scholar 

  27. Zeki S, Perry RJ, Bartels A (2003) The processing of kinetic contours in the brain. Cereb Cortex 13:189–202

    Article  CAS  PubMed  Google Scholar 

  28. Demb JB, Zaghloul K, Sterlingr P (2001) Cellular basis for the response to second-order motion cues in Y retinal ganglion cells. Neuron 32:711–721

    Article  CAS  PubMed  Google Scholar 

  29. Gharat A, Baker CL (2012) Motion-defined contour processing in the early visual cortex. J Neurophysiol 108:1228–1243

    Article  PubMed  Google Scholar 

  30. Rosenberg A, Husson TR, Issa NP (2010) Subcortical representation of non-Fourier image features. J Neurosci 30:1985–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou F, Huang CB, Lesmes L et al (2010) qCSF in clinical application: efficient characterization and classification of contrast sensitivity functions in amblyopia. Investig Ophthalmol Vis Sci 51(10):5365–5377. https://doi.org/10.1167/iovs.10-5468

    Article  Google Scholar 

  32. Lesmes LA, Lu ZL, Baek J et al (2010) Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. J Vis 10:17–21. https://doi.org/10.1167/10.3.17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reynaud A, Tang Y, Zhou Y et al (2014) A normative framework for the study of second-order sensitivity in vision. J Vis. https://doi.org/10.1167/14.9.3

    Article  PubMed  Google Scholar 

  34. Yan F-F, Hou F, Lu Z-L et al (2017) Efficient characterization and classification of contrast sensitivity functions in aging. Sci Rep 7:5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao Y, Reynaud A, Tang Y et al (2015) The amblyopic deficit for 2nd order processing: generality and laterality. Vis Res 114:111–121

    Article  PubMed  Google Scholar 

  36. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  37. Kleiner M, Brainard D, Pelli D (2007) “What’s new in Psychtoolbox-3?” Perception 36 ECVP abstract supplement

  38. Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    Article  CAS  PubMed  Google Scholar 

  39. Prins N, Kingdom FAA (2018) Applying the model-comparison approach to test specific research hypotheses in psychophysical research using the palamedes toolbox. Front Psychol 9:1250. https://doi.org/10.3389/fpsyg.2018.01250

    Article  PubMed  PubMed Central  Google Scholar 

  40. Watson AB, Ahumada AJ Jr (2005) A standard model for foveal detection of spatial contrast. J Vis 5:717–740

    Article  PubMed  Google Scholar 

  41. Ahumada AJ Jr, Peterson HA (1992) Luminance-model-based DCT quantization for color image compression. In: Rogowitz BE (ed) Human vision, visual processing, and digital display III. Proceedings of the SPIE, vol 1666, p 365Y374

  42. Lu Z-L, Chu W, Dosher BA et al (2005) Perceptual learning of Gabor orientation identification in visual periphery: complete inter-ocular transfer of learning mechanisms. Vis Res 45:2500–2510

    Article  PubMed  Google Scholar 

  43. Bunce C, Patel KV, Xing W et al (2014) Ophthalmic statistics note 1: unit of analysis. Br J Ophthalmol 98:408–412

    Article  PubMed  Google Scholar 

  44. Matthews JN, Altman DG, Campbell MJ et al (1990) Analysis of serial measurements in medical research BMJ 300:230–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lewontin RC (1966) On the measurement of relative variability. Syst Zool 15:141–142

    Article  Google Scholar 

  46. Busey T, Craig J, Clark C et al (2010) Age-related changes in visual temporal order judgment performance: relation to sensory and cognitive capacities. Vis Res 50:1628–1640

    Article  PubMed  Google Scholar 

  47. Spiegel DP, Reynaud A, Ruiz T et al (2016) First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury. Vis Res 122:43–50

    Article  PubMed  Google Scholar 

  48. Kingdom FAA, Prins N, Hayes A (2003) Mechanism independence for texture-modulation detection is consistent with a filter-rectify-filter mechanism. Vis Neurosci 20:65–76

    Article  PubMed  Google Scholar 

  49. Cropper SJ, Kvansakul JGS, Johnston A (2009) The detection of the motion of contrast modulation: a parametric study. Attent Percept Psychophys 71:757–782

    Article  Google Scholar 

  50. Wang Z, Yao Z, Yuan N et al (2014) Declined contrast sensitivity of neurons along the visual pathway in aging cats. Front Aging Neurosci 6:163

    PubMed  PubMed Central  Google Scholar 

  51. Yang Y, Liang Z, Li G et al (2008) Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys. Neuroscience 156:748–757

    Article  CAS  PubMed  Google Scholar 

  52. Woi PJ, Kaur S, Waugh SJ et al (2016) Visual acuity measured with luminance-modulated and contrast-modulated noise letter stimuli in young adults and adults above 50 years old. F1000Research 5:1961

    Article  PubMed  PubMed Central  Google Scholar 

  53. Higgins KE, Jaffe MJ, Caruso RC et al (1988) Spatial contrast sensitivity: effects of age, test-retest, and psychophysical method. J Opt Soc Am A Opt Image Sci 5:2173–2180

    Article  CAS  Google Scholar 

  54. Santos NA, Oliveira AB, Nogueira RMTBL et al (2006) Mesopic radial frequency contrast sensitivity function for young and older adults. Braz J Med Biol Res 39:791–794

    Article  CAS  PubMed  Google Scholar 

  55. Bennett PJ, Sekuler R, Sekuler AB (2007) The effects of aging on motion detection and direction identification. Vis Res 47:799–809

    Article  PubMed  Google Scholar 

  56. Hua T, Kao C, Sun Q et al (2008) Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res Bull 75:119–125

    Article  CAS  PubMed  Google Scholar 

  57. Leventhal AG, Wang Y, Pu M et al (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815

    Article  CAS  PubMed  Google Scholar 

  58. Schmolesky MT, Wang Y, Pu M et al (2000) Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat Neurosci 3:384–390

    Article  CAS  PubMed  Google Scholar 

  59. Ozeki H, Sadakane O, Akasaki T et al (2004) Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex. J Neurosci 24:1428–1438

    Article  CAS  PubMed  Google Scholar 

  60. Serrano-Pedraza I, Romero-Ferreiro V, Read JCA et al (2014) Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Front Psychol 5:1431

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tadin D, Kim J, Doop ML et al (2006) Weakened center-surround interactions in visual motion processing in schizophrenia. J Neurosci 26:11403–11412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoon JH, Maddock RJ, Rokem A et al (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 30:3777–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Betts LR, Taylor CP, Sekuler AB et al (2005) Aging reduces center-surround antagonism in visual motion processing. Neuron 45:361–366

    Article  CAS  PubMed  Google Scholar 

  64. Pardhan S, Gilchrist J, Elliott DB et al (1996) A comparison of sampling efficiency and internal noise level in young and old subjects. Vis Res 36:1641–1648

    Article  CAS  PubMed  Google Scholar 

  65. Hallum LE, Movshon JA (2014) Surround suppression supports second-order feature encoding by macaque V1 and V2 neurons. Vis Res 104:24–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China Grants (NSFC 31300913) to YT and (NSFC 81261120562) to YZ and by Canadian Institutes of Health Research Grants CCI-125686 and MT-10818 to RFH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Reynaud.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Statement of human and animal rights

This research has been approved by the ethics committee of the University of Science and Technology of China, and by the Ethics Review Board of the Montreal Neurological Institute. It was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Informed consent

Informed consent was obtained before participation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40520_2018_1018_MOESM1_ESM.pdf

Supplementary material 1 Figure A1. Individual sensitivity functions of the 50 participants. The sensitivity functions are shown for the first-order oriented carrier (light blue, LM1d), the first-order moving carrier (light red, LM2d), the contrast modulation (green, CM), the orientation modulation (dark blue, OM), and the motion modulation (dark red, MM). Sensitivity functions are colored with light shades for the dominant eye (DE) and dark shades for the non-dominant eye (NDE) (PDF 937 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynaud, A., Tang, Y., Zhou, Y. et al. Second-order visual sensitivity in the aging population. Aging Clin Exp Res 31, 705–716 (2019). https://doi.org/10.1007/s40520-018-1018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-018-1018-6

Keywords

Navigation