Skip to main content

Advertisement

Log in

Hybrid Power Systems: Solution to Rural Electrification

  • Electrification (J Logan, Section Editor)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

In most remote regions, traditional sources are neither available nor economical. Thus, a solution is only feasible if renewable sources available locally are exploited and used in such areas for the production of electricity. Luckily, India has great potential from these sources, most of which are still untapped. In terms of independent operation of these power units, it is not successful. By integrating two or more of these systems to form a hybrid energy system, a feasible solution can be achieved. In most remote areas, hybrid energy systems can provide electricity at a comparatively low cost. The present paper provides review of various research work done for finding solution for rural electrification using hybrid energy systems. A review is done on the basis of cost analysis, unit sizing optimal designing, control and optimization, and pollution reduction. Feasibility of a system with different combinations of renewable sources has also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. https://powermin.gov.in/en/content/power-sector-glance-all-india

  2. https://cea.nic.in/installed-capacity-report

  3. IRENA, “Climate change and renewable energy: national policies and the role of communities, cities and regions (report to the G20 climate sustainability working group (CSWG)),” 2019. http://www.irena.org.

  4. Santosh Singh Raghuwanshi & Rajesh Arya. Renewable energy potential in India and future agenda of research. Int J Sustain Eng. 2019;12(5):291–302. https://doi.org/10.1080/19397038.2019.1602174.

    Article  Google Scholar 

  5. Sofia Simoes, Marianne Zeyringer, Dieter Mayr, Thomas Huld, Wouter Nijs, Johannes Schmidt, “Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: a case study for Austria”, Renewable Energy, Volume 105, 2017, Pages 183-198,ISSN 0960-1481. https://doi.org/10.1016/j.renene.2016.12.020.

  6. Yashwant Sawle, S.C.Gupta, Aashish Kumar Bohre,, “Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system”, Renewable and Sustainable Energy Reviews, Volume 81, Part 2,2018,Pages 2217-2235,ISSN 1364-0321. https://doi.org/10.1016/j.rser.2017.06.033

  7. Jimmy SG, Ehnferg Math HJ. Bollen, “Reliability of a small power system using solar power & hydro.” Electrical; Power Syst Res. 2005;74:119–27.

    Article  Google Scholar 

  8. Bakos GC. Feasibility study of a hybrid wind/hydro power- system for low-cost electricity production. Appl Energy. 2002;72:599–608.

    Article  Google Scholar 

  9. Gupta, Ajai, R. P. Saini, and M. P. Sharma. Economic aspects of hybrid renewable energy systems for remote area. IEEE Int Conf Ind Technol. 2006;1706–1710. IEEE. https://doi.org/10.1109/ICIT.2006.372496.

  10. Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Ind Electron. 2006;53(2):486–94. https://doi.org/10.1109/TIE.2006.870658.

    Article  Google Scholar 

  11. Veerachary M, Senjyu T, Uezato K. Voltage-based maximum power point tracking control of PV system. IEEE Trans Aerosp Electron Syst. 2002;38(1):262–70. https://doi.org/10.1109/7.993245.

    Article  Google Scholar 

  12. Ashok S. Optimized model for community –based hybrid energy system. Renew Energy. 2007;32:1155–64. https://doi.org/10.1016/j.renene.2006.04.008.

    Article  Google Scholar 

  13. Benatiallah, A. Monly Ali, M.Dahbi, D. Benatiallah and M.Sellam, “Study and performances of hybrid renewable energy system,” International conference on advancement in Electrical and power engineering (ICAEP,2012) March24-25,2012 Dubai.

  14. Kenfack J, Neirae FP, Tatiietre TT, Mayer D, Fogul M, Legenune A. Micro-hydro PV-solar system; sizing a small hydro-PV- hybrid system for rural electrification indeveloping countries. Renew Energy. 2009;34:2259–63.

    Article  Google Scholar 

  15. M. Moniruzzaman and S. Hasan, "Cost analysis of PV/wind/diesel/grid connected hybrid systems," 2012 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 2012. 727-730. https://doi.org/10.1109/ICIEV.2012.6317346Shezan

  16. S K. A., S. Julai, M. A. Kibria, Ullah, K. R., Saidur, R., Chong, W.T., Akikur, R. K., “ Performance analysis of an off-grid wind-PV(photovoltaic)-diesel-battery hybrid energy system feasible for remote areas” J Clean Prod 125:121–32. https://doi.org/10.1016/j.jclepro.2016.03.014.

  17. https://mnre.gov.in/img/documents/uploads/670406a017f54c9386fcde911ee5abe6.pdf. Accessed on 20-01-2019

  18. Das, B. K., and F. Zaman, “ Performance analysis of a PV/diesel hybrid system for a remote area in Bangladesh: effects of dispatch strategies, batteries, and generator selection”, Energy 169:263–76. https://doi.org/10.1016/j.energy.2018.12.014

  19. Rajanna S, Saini RP. Development of optimal integrated renewable energy model with battery storage for a remote Indian area. Energy. 2016;111:803–17. https://doi.org/10.1016/j.energy.2016.06.005.

    Article  Google Scholar 

  20. Upadhyay, S., and M. P. Sharma, “Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India”, Energy 94. https://doi.org/10.1016/j.energy.2015.10.134

  21. Adefarati, T., and R. C. Bansal, “Reliability, economic and environmental analysis of a micro grid system in the presence of renewable energy resources”, Applied Energy. https://doi.org/10.1016/j.apenergy.2018.12.050

  22. Hongxing Yang, Wei Zhou, Chengzhi Lou. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl Energy. 2009;86:163–9. https://doi.org/10.1016/j.apenergy.2008.03.008.

    Article  Google Scholar 

  23. K. Murugaperumal, P. Ajay D Vimal Raj, “Feasibility design and techno-economic analysis of hybrid renewable energy system for rural electrification”, Solar Energy , 188,2019, 1068-1083,ISSN 0038-092X. https://doi.org/10.1016/j.solener.2019.07.008.

  24. S.G. Kilimo and M.T.E. Kahn ,”Small hydro for rural electrification ”Conference May 2010 IEEE Explore.

  25. Gurung A, Brycerer I, Joo JH, Oh S-E. Socio economic impacts of a micro-hydro power plant on rural livelihood. Sci Res Essays. 2011;6(19):3964–72. http://www.academicjournals.org/SRE.

  26. Abolfazl Ghaffari, Alireza Askarzadeh (2019) “Design optimization of a hybrid system subject to reliability level and renewable energy penetration”, Energy. https://doi.org/10.1016/j.energy.2019.116754

  27. Moriana I, San Martín I, Sanchis P. Wind-photovoltaic hybrid systems design. SPEEDAM. 2010;2010:610–5. https://doi.org/10.1109/SPEEDAM.2010.5542247.

    Article  Google Scholar 

  28. Anula khale , Saroj Rangnekar , “Optimizing of a grid integrated solar PV system,” IET renewable power generation 2014 8, 10.

  29. M Kolhe, KM Iromi Ranaweera, and AGBS Gunawardana (2014) "Techno-economic analysis of off-grid hybrid renewable energy system for Sri Lanka,". 7th Int Conf Info Autom Sustain. 1-5. https://doi.org/10.1109/ICIAFS.2014.7069572

  30. Chedid R, Baydoun I, Eid S, Tarhini S, Ghajar R. Techno-economic analysis of a PV generator operating in a hybrid diesel-unreliable grid system. Int Conf Clean Elect Power (ICCEP). 2015;2015:134–9. https://doi.org/10.1109/ICCEP.2015.7177613.

    Article  Google Scholar 

  31. Almashakbeh AS, AA Arfoa, and ES Hrayshat (2019) “Techno-economic evaluation of an off-grid hybrid PV-wind- diesel-battery system with various scenarios of system’s renewable energy fraction”. Energy Sources, Part A: Recover, Utilization, Environ Effects 1–24. https://doi.org/10.1080/15567036.2019.1673515

  32. Ramesh, M., and R. P. Saini,. (2020) “Dispatch strategy based performance analysis of a hybrid renewable energy system for a remote rural area in India” Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.120697

  33. Barun K. Das, Forhad Zaman. (2019) “Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: effects of dispatch strategies, batteries, and generator selection”, Energy, Volume 169 263-276,ISSN 0360-5442. https://doi.org/10.1016/j.energy.2018.12.014.

  34. Muhammad Shahzad Javed, Aotian Song, Tao Ma. (2019) “Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm”, Energy, Volume 176 Pages 704-717,ISSN 0360-5442. https://doi.org/10.1016/j.energy.2019.03.131

  35. Barun K. Das, Najmul Hoque, Soumya Mandal, Tapas Kumar Pal, Md Abu Raihan. (2017) ”A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh”, Energy , Volume 134, Pages 775-788,ISSN 0360-5442. https://doi.org/10.1016/j.energy.2017.06.024

  36. Razmjoo A, R. Shirmohammadi, A. Davarpanah, and F Pourfayaz, “Stand-alone hybrid energy systems for remote area power generation”. Energy Reports 5:231–41. https://doi.org/10.1016/j.egyr.2019.01.010

  37. Hansjorg Gabler, Joachim Luther, “Wind –solar hybrid electrical supply systems results from a simulation model and optimization with respect to energy pay and back time”, Solar And Wind Technology. 5(3) 239-247,1988.

  38. Borowy BS, Salameh ZM. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans Energy Convers. 1996;11(2):367–75. https://doi.org/10.1109/60.507648.

    Article  Google Scholar 

  39. Tomondo Senjyu, Daisuke Hayashi, Naomitu Uraski, Toshihisa Funabashi, (2006) “Optimum configuration for renewable generating system in residence using genetic algorithm”, IEEE Trans. on Energy Conversion .21 2

  40. Mousa KK, AlZu’bi H, Diabat A. Design of a hybrid solar-wind power plant using optimization. Second Int Confe Eng Syst Manag Appl. 2010;2010:1–6.

    Google Scholar 

  41. Nelson DB, Nehrir MH, Wang C. Unit sizing and cost analysis of stand alone hybrid wind/PV/fuel cell power generation system. Renew Energy. 2006;31:1641–56. https://doi.org/10.1016/j.renene.2005.08.031.

    Article  Google Scholar 

  42. Nair NR, Ebenezer M. Operation and control of grid connected wind — PV hybrid system. Int Confe Adv Green Energy (ICAGE). 2014;2014:197–203. https://doi.org/10.1109/ICAGE.2014.7050165.

    Article  Google Scholar 

  43. Khanh LN, Seo J, Kim Y, Won D. Power-management strategies for a grid-connected PV-FC hybrid system. IEEE Trans Power Deliv. 2010;25(3):1874–82. https://doi.org/10.1109/TPWRD.2010.2047735.

    Article  Google Scholar 

  44. T. P. Kumar, N. Subrahmanyam and M. Sydulu. (2013) "Unit power control and feeder flow control strategies for a grid-connected hybrid system," 2013 International Conference on Power, Energy and Control (ICPEC). 722-727. https://doi.org/10.1109/ICPEC.2013.6527750.

  45. H. Laabidi and A. Mami. (2015) "Grid connected wind-photovoltaic hybrid system," 2015 5th International Youth Conference on Energy (IYCE). 1-8. https://doi.org/10.1109/IYCE.2015.7180770

  46. Singaravel MMR, Daniel SA. MPPT with single DC–DC converter and inverter for grid-connected hybrid wind-driven PMSG–PV system. IEEE Trans Ind Electron. 2015;62(8):4849–57. https://doi.org/10.1109/TIE.2015.2399277.

    Article  Google Scholar 

  47. Belouda, M., H. Oueslati, S. B. Mabrouk, and A. Mami, “ Optimal design and sensitivity analysis of a PV-WT- hydraulic storage system generation in a remote area in Tunisia” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. https://doi.org/10.1080/15567036.2019.1672837

  48. Rullo P, Braccia L, Luppi P, Zumoffen D, Feroldi D. Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems. Renew Energy Elsevier. 2019;140:436–51.

    Article  Google Scholar 

  49. Das BK, Hoque N, Mandal S, Pal TK, Raihan MA. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy. 2017;134:775–88. https://doi.org/10.1016/j.energy.2017.06.024.

    Article  Google Scholar 

  50. Fodhil F, Hamidat A, Nadjemi O. 2 “Potential, optimization and sensitivity analysis of photovoltaic-diesel- battery hybrid energy system for rural electrification in Algeria.” Energy. 2019;169:613–24. https://doi.org/10.1016/j.energy.2018.12.049.

    Article  Google Scholar 

  51. Valenciaga F, Puleston PF. "Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy". IEEE transactions on energy conversion 2005;20(2):398–405. https://doi.org/10.1109/TEC.2005.845524

  52. A Hajizadeh, MA Golkar (2008) “Fuzzy neural control of a hybrid fuel cell/battery distributed power generation system”, IET Renewable Power Generation. https://doi.org/10.1049/iet-rpg.2008.0027

  53. Amjady N, Keynia F, Zareipour H. Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans Sustain Energy. 2011;2(3):265–76. https://doi.org/10.1109/TSTE.2011.2114680.

    Article  Google Scholar 

  54. Leon AE, Mauricio JM, Gomez-Exposito A, Solsona JA. An improved control strategy for hybrid wind farms. IEEE Trans Sustain Energy. 2010;1(3):131–41. https://doi.org/10.1109/TSTE.2010.2068580.

    Article  Google Scholar 

  55. Vishnupriyan J, Manoharan PS. Demand side management approach to rural electrification of different climate zones in Indian state of Tamil Nadu. Energy. 2017;138(1):799–815. https://doi.org/10.1016/j.energy.2017.07.140.

    Article  Google Scholar 

  56. Olatomiwa L, Mekhilef S, Huda ASN, Ohunakin OS. Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria. Renew Energy. 2015;83:435–46. https://doi.org/10.1016/j.renene.2015.04.057.

    Article  Google Scholar 

  57. Olatomiwa L, Blanchard R, Mekhilef S, Akinyele D. Hybrid renewable energy supply for rural healthcare facilities : an approach to quality healthcare delivery. Sustain Energy Technol Assessments. 2018;30:121–38. https://doi.org/10.1016/j.seta.2018.09.007.

    Article  Google Scholar 

  58. Connolly D, Lund H, Mathiesen BV, Leahy M. ”A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl Energy. 2010;87(4):1059–82. https://doi.org/10.1016/j.apenergy.2009.09.026.

    Article  Google Scholar 

  59. AlRashidi MR, El-Hawary ME. A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput. 2009;13(4):913–8. https://doi.org/10.1109/TEVC.2006.880326.

    Article  Google Scholar 

  60. Wang L, Singh C. Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans Energy Convers. 2009;24(1):163–72. https://doi.org/10.1109/TEC.2008.2005280.

    Article  Google Scholar 

  61. Fodhil F, Hamidat A, Nadjemi O. Potential, optimization and sensitivity analysis of photovoltaic-diesel- battery hybrid energy system for rural electrification in Algeria. Energy. 2019;169(15):613–24. https://doi.org/10.1016/j.energy.2018.12.049.

    Article  Google Scholar 

  62. Baseer MA, A Alqahtani, and S Rehman (2019) “ Techno-economic design and evaluation of hybrid energy systems for residential communities: case study of Jubail industrial city” J Clean Prod. 237. https://doi.org/10.1016/j.jclepro.2019.117806

  63. Abdul-Wahab, S., K. Mujezinovic, and A. M. Al-Mahruqui, “Optimal design and evaluation of a hybrid energy system for off-grid remote area” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2019.1656308

  64. Adefarati, T., and R. C. Bansal, “Reliability, economic and environmental analysis of a micro grid system in the presence of renewable energy resources” Appl Energy. https://doi.org/10.1016/j.apenergy.2018.12.050.

  65. Kumar S., T. Kaur, M. K. Arora, and S. Upadhyay, “ Resource estimation and sizing optimization of PV/micro hydro- based hybrid energy system in rural area of Western Himalayan Himachal Pradesh in India, “. Energy Sources,part a: Recover, Utilization Environ Effects 41(22):2795–2807.

  66. Baseer, M. A., A. Alqahtani, and S. Rehman, “Techno-economic design and evaluation of hybrid energy systems for residential communities: case study of Jubail industrial city” J Clean Prod 237:117806. https://doi.org/10.1016/j.jclepro.2019.117806

  67. Sandip Kumar, Dr. Mani Kant Paswan, Sudhakar Behera (2018) “Micro study of hybrid power system for rural electrification- a case study” Int J Appl Eng Res ISSN 0973-4562. 13(7): 4888-4896

  68. Barun K. Das, Najmul Hoque, Soumya Mandal, Tapas Kumar Pal, Md Abu Raihan. (2017) “A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh”, Energy. https://doi.org/10.1016/j.energy.2017.06.024

  69. Anurag C, Saini RP. Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations. Renew Sustaine Energy RevElsevier. 2015;51:662–81. https://doi.org/10.1016/j.rser.2015.06.043.

    Article  Google Scholar 

  70. Li J, Liu P, Li Z. Optimal design and techno-economic analysis of a solar-wind biomass off-grid hybrid power system for remote rural electrification: a case study of west China. Energy. 2020;208:118387.

    Article  Google Scholar 

  71. Ramesh M, Saini RP. “Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India. J Clean Prod. 2020;259:120697. https://doi.org/10.1016/j.jclepro.2020.120697.

    Article  Google Scholar 

  72. Bhatt A, Sharma MP, Saini RP. Feasibility and sensitivity analysis of an off-grid micro hydro-photovoltaic-biomass and biogas-diesel-battery hybrid energy system for a remote area in Uttarakhand state, India. Renew= Sustain Energy Rev. 2016;61:53–69.

    Article  Google Scholar 

  73. Chauhan A, Saini RP. Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India. Energy. 2016;94:138–56. https://doi.org/10.1016/j.energy.2015.10.136.

    Article  Google Scholar 

  74. Halabi LM, Mekhilef S, Olatomiwa L, Hazelton J. Performance analysis of hybrid PV/diesel/battery system using HOMER : a case study Sabah, Malaysia. Energy Convers Manag. 2017;144:322–39.

    Article  Google Scholar 

  75. Patel AM, Singal SK. Optimal component selection of integrated renewable energy system for power generation in stand-alone applications. Energy. 2019;175:481–504. https://doi.org/10.1016/j.energy.2019.03.055.

    Article  Google Scholar 

  76. Das Barun K, Forhad Z. Performance analysis of a PV/diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection. Energy. 2019;169:263–76. https://doi.org/10.1016/j.energy.2018.12.014.

    Article  Google Scholar 

  77. Can Duman A, Önder G. Techno-economic analysis of off-grid photovoltaic LED road lighting systems: a case study for northern, central and southern regions of Turkey. Build Environ. 2019;156:89–98. https://doi.org/10.1016/j.buildenv.2019.04.005.

    Article  Google Scholar 

  78. Mandal S, Das BK, Hoque N. Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. J Clean Prod. 2018;200:12–27. https://doi.org/10.1016/j.jclepro.2018.07.257.

    Article  Google Scholar 

  79. Anuradha, S. K.Sinha and A.Yadav, (2017) "Modelling of DC linked PV/hydro hybrid system for rural electrification," 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 55-59. https://doi.org/10.1109/RDCAPE.2017.8358239

  80. Sessa V, Bhandari R, Ba A. Rural electrification pathways: an implementation of LEAP and GIS Tools in Mali. Energies. 2021;14:3338. https://doi.org/10.3390/en14113338.

    Article  Google Scholar 

Download references

Acknowledgements

Anuradha recognizes the research facility of College of Engineering Roorkee (COER), Roorkee, India, for providing research facilities for doing current research and also extends her gratitude to Uttarakhand Technical University Dehradun, India, for providing opportunity for doing Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Electrification

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Yadav, A. & Sinha, S. Hybrid Power Systems: Solution to Rural Electrification. Curr Sustainable Renewable Energy Rep 9, 77–93 (2022). https://doi.org/10.1007/s40518-022-00206-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-022-00206-x

Keywords

Navigation