Skip to main content
Log in

Crown Glass Drilling by Short-Pulse CO2 Laser with Tunable Pulse Tail

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Hole drilling in crown glass with a large thermal expansion coefficient of 94 × 10−7 /K by a longitudinally excited short-pulse CO2 laser with a tunable laser pulse tail was investigated. The CO2 laser produced short laser pulses with a pulse width of about 250 ns, a pulse tail with a length of 31.4 to 134.7 μs, a spike pulse to pulse tail energy ratio of 1:7 to 1:92, and a fluence per single pulse of 6.0 to 37.9 J/cm2 at a repetition rate of 1 to 400 Hz. Sample cooling was not employed in the drilling process. At a repetition rate of 1 to 90 Hz, the CO2 laser pulses produced cracks. At a repetition rate of 100 to 140 Hz, the CO2 laser pulses occasionally produced cracks and crack-free holes. At a repetition rate of 150 to 400 Hz, the CO2 laser pulses produced crack-free holes. Under various irradiation conditions, the hole depth and estimated hole volume per total irradiation fluence depended on the fluence per single pulse but did not depend on the laser pulse waveform or repetition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Maini, A.: Lasers and Optoelectronics: Fundamentals, Devices and Applications. Wiley, Hoboken (2013)

    Book  Google Scholar 

  2. Choi, H.K., et al.: Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique. Opt. Laser Technol. 75, 63–70 (2015)

    Article  Google Scholar 

  3. Liu, Y.Z.: Coaxial waterjet-assisted laser drilling of film cooling holes in turbine blades. Int. J. Mach. Tools Manuf. 150 (2020)

  4. McNally, C.A., Folkes, J., Pashby, I.R.: Laser drilling of cooling holes in aeroengines: state of the art and future challenges. Mater. Sci. Technol. 20, 805–813 (2004)

    Article  Google Scholar 

  5. Hof, L.A., Ziki, J.A.: Micro-hole drilling on glass substrates-a review. Micromachines. 8, 1–23 (2017)

    Google Scholar 

  6. Ogura, H., Yoshida, Y.: Hole drilling of glass substrates with a CO2 laser. Jpn. J. Appl. Phys. 42, 2881–2886 (2003)

    Article  Google Scholar 

  7. Irawan, R., Swee Chuan, T., Chia Meng, T., Khay Ming, T.: Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system. Open Biomed. Eng. J. 2, 28–35 (2008)

    Article  Google Scholar 

  8. Yang, M., Li, Y., Wang, D.N.: Long-period fiber gratings fabricated by use of defocused CO2 laser beam for polarization-dependent loss enhancement. J. Opt. Soc. Am. B. 26, 1203 (2009)

    Article  Google Scholar 

  9. Oh, S., Lee, K.R., Paek, U.-C., Chung, Y.: Fabrication of helical long-period fiber gratings by use of a CO2 laser. Opt. Lett. 29, 1464 (2004)

    Article  Google Scholar 

  10. Klank, H., Kutter, J.P., Geschke, O.: CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip. 2, 242–246 (2002)

    Article  Google Scholar 

  11. Cheng, J.Y., Wei, C.W., Hsu, K.H., Young, T.H.: Direct-write laser micromachining and universal surface modification of PMMA for device development. Sensors Actuators B Chem. 99, 186–196 (2004)

    Article  Google Scholar 

  12. Yeo, C.Y., Tam, S.C., Jana, S., Lau, M.W.S.: A technical review of the laser drilling of aerospace materials. J. Mater. Process. Technol. 42, 15–49 (1994)

    Article  Google Scholar 

  13. Uno, K., Yamamoto, T., Akitsu, T., Jitsuno, T.: Glass drilling by longitudinally excited CO2 laser with short laser pulse. Proc. SPIE. 9350, 93501E (2015)

    Article  Google Scholar 

  14. Uno, K., Nakamura, K., Goto, T., Jitsuno, T.: Longitudinally excited CO2 laser with short laser pulse like tea CO2 laser. J Infrared. Millimeter. Terahertz Waves. 30, 1123–1130 (2009)

    Article  Google Scholar 

  15. Uno, K., Yamamoto, T., Watanabe, M., Akitsu, T., Jitsuno, T.: SiO2 -glass drilling by short-pulse CO2 laser with controllable pulse-tail energy. Proc. SPIE. 9735, 973519 (2016)

    Article  Google Scholar 

  16. Uno, K., Jitsuno, T.: Control of laser pulse waveform in longitudinally excited CO2 laser by adjustment of excitation circuit. Opt. Laser Technol. 101, 195–201 (2018)

    Article  Google Scholar 

  17. Uno, K., Watarai, S., Kodama, Y., Yoneya, K., Jitsuno, T.: Longitudinally excited short-pulse CO2 laser with large discharge tube without preionization. Opt. Laser Technol. 148, 107745 (2022)

    Article  Google Scholar 

  18. Rihakova, L., Chmelickova, H.: Laser micromachining of glass, silicon, and ceramics. Adv. Mater. Sci. Eng. 2015, 1–6 (2015)

    Article  Google Scholar 

  19. Schulz, W., Eppelt, U., Poprawe, R.: Review on laser drilling I. fundamentals, modeling, and simulation. J. Laser Appl. 25, 012006 (2013)

    Article  Google Scholar 

  20. Salleo, A., Sands, T., Génin, F.Y.: Machining of transparent materials using an IR and UV nanosecond pulsed laser. Appl. Phys. A Mater. Sci. Process. 71, 601–608 (2000)

    Article  Google Scholar 

  21. Zhang, C., et al.: Influence of pulse length on heat affected zones of evaporatively-mitigated damages of fused silica optics by CO2 laser. Opt. Lasers Eng. 125 (2020)

  22. Guignard, F., Autric, M.L., Baudinaud, V.: Temperature and residual stress evolution in CO2-laser-irradiated glass. High-Power Laser Ablation. 3343, 534–545 (1998)

    Article  Google Scholar 

  23. Okazaki, K., et al.: Sub-wavelength micromachining of silica glass by irradiation of CO2 laser with Fresnel diffraction. Appl. Phys. A Mater. Sci. Process. 104, 593–599 (2011)

    Article  Google Scholar 

  24. Nakamura, R., et al.: Cutting complex shape in glass substrate with pulsed CO2 laser. Rev. Laser Eng. 43, 28–30 (2015)

    Article  Google Scholar 

  25. Dyer, P.E., Waldeck, I., Roberts, G.C.: Fine-hole drilling in Upilex polyimide and glass by TEA CO2 laser ablation. J. Phys. D. Appl. Phys. 30, 6 (1997)

    Article  Google Scholar 

  26. Salonitis, K., Stournaras, A., Tsoukantas, G., Stavropoulos, P., Chryssolouris, G.: A theoretical and experimental investigation on limitations of pulsed laser drilling. J. Mater. Process. Technol. 183, 96–103 (2007)

    Article  Google Scholar 

  27. Förster, D.J., Weber, R., Holder, D., Graf, T.: Estimation of the depth limit for percussion drilling with picosecond laser pulses. Opt. Express. 26, 11546 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JST A-STEP, No. AS3015041S. We would like to thank Seidensha Electronics CO., LTD of Japan.

Funding

This work was supported by JST A-STEP, grant No. AS3015041S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ekhlasur Rahaman.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, M.E., Uno, K. Crown Glass Drilling by Short-Pulse CO2 Laser with Tunable Pulse Tail. Lasers Manuf. Mater. Process. 9, 72–80 (2022). https://doi.org/10.1007/s40516-022-00165-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00165-7

Keywords

Navigation