Skip to main content

Advertisement

Log in

Vitamin Status and Mineralized Tissue Development

  • Oral Disease and Nutrition (F Nishimura, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The physiological control of mineralized tissue development is mediated by two processes: mineralization, such as bone formation due to osteoblast activity, and mineralized tissue destruction by osteoclast bone resorption. In this system, nutritional status, including vitamin intake, influences each regulatory processes, although definite responding mechanisms in target cells vary according to each compound.

Recent Findings

In contrast with water-soluble vitamins that constant supply is required, fat-soluble vitamins such as vitamin D and K are stored in the liver and fat tissue for long time. They are metabolized into congeneric compounds with various activities to participate in the local mineralization process in the body.

Summary

During physiological or non-physiological mineralization, the local actions of vitamin D and K are regulated by nutrient factor derived from dietary supply, and influenced by systemic calcium metabolism and homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Steenbock H, Black A. Fat-soluble vitamins XXIII. The induction of growth-promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light. J Biol Chem. 1925;64:263–98.

    CAS  Google Scholar 

  2. Shearer MJ, Vitamin K. Vitamin K. Lancet. 1995;345:229–34.

    Article  CAS  PubMed  Google Scholar 

  3. Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood. 1999;93(6):1798–808.

    CAS  PubMed  Google Scholar 

  4. Zhu JG, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;10:15650–5.

    Article  Google Scholar 

  5. DeLuca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014;3:8–15.

    Google Scholar 

  6. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. •• Uekawa A, Yamanaka H, Lieben L, Kimira Y, Uehara M, Yamamoto Y, et al. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells. FASEB J. 2018. A recent review, which describes vitamin D-independent transcellular calcium absorption.;32:1903–15.

    Article  PubMed  Google Scholar 

  8. Masuyama R, Nakaya Y, Tanaka S, Tsurukami H, Nakamura T, Watanabe S, et al. Dietary phosphorus restriction reverses the impaired bone mineralization in vitamin D receptor knockout mice. Endocrinology. 2001;142:494–7.

    Article  CAS  PubMed  Google Scholar 

  9. Balsan S, et al. Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. J Clin Invest. 1986;77:61–1667.

    Article  Google Scholar 

  10. Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology. 2009;136:1317–27. e1311-12

    Article  CAS  PubMed  Google Scholar 

  11. Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekline K, et al. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology. 1999;140:1005–8.

    Article  CAS  PubMed  Google Scholar 

  12. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999;140:4982–7.

    Article  CAS  PubMed  Google Scholar 

  13. Masuyama R, Nakaya Y, Katsumata S, Kajita Y, Uehara M, Tanaka S, et al. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J Bone Miner Res. 2003;18:1217–26.

    Article  CAS  PubMed  Google Scholar 

  14. Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, et al. Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem. 2004;279:16754–66.

    Article  CAS  PubMed  Google Scholar 

  15. Fraser WD. Hyperparathyroidism. Lancet. 2009;374:145–58.

    Article  CAS  PubMed  Google Scholar 

  16. Fu Q, Manolagas SC, O’Brien CA. Parathyroid hormone controls receptor activator of NF-κB ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol. 2006;26:6453–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW. Activation of receptor activator of NF-κB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26:6469–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galli C, Zella LA, Fretz JA, Fu Q, Pike JW, Weinstein RS, et al. Targeted deletion of a distant transcriptional enhancer of the receptor activator of nuclear factor-kappaB ligand gene reduces bone remodeling and increases bone mass. Endocrinology. 2008;149:146–53.

    Article  CAS  PubMed  Google Scholar 

  19. Meyer MB, Goetsch PD, Pike JW. Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J Steroid Biochem Mol Biol. 2010;121:136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lieben L, Masuyama R, Torrekens S, van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lieben L, Carmeliet G. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis. Bone. 2013;54:237–43.

    Article  CAS  PubMed  Google Scholar 

  22. van Driel M, Koedam M, Buurman CJ, Roelse M, Weyts F, Chiba H, et al. Evidence that both 1alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. J Cell Biochem. 2006;99:922–35.

    Article  PubMed  Google Scholar 

  23. Zhou S, Glowacki J, Kim SW, Hahne J, Geng S, Mueller SM, et al. Clinical characteristics influence in vitro action of 1,25-dihydroxyvitamin D3 in human marrow stromal cells. J Bone Miner Res. 2012;27:1992–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gardiner EM, et al. Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J. 2000;14:1908–16.

    Article  CAS  PubMed  Google Scholar 

  25. Vermeer C, Jie KS, Knapen MH. Role of vitamin K in bone metabolism. Annu Rev Nutr. 1995;15:1–22.

    Article  CAS  PubMed  Google Scholar 

  26. Morris DP, Stevens RD, Wright DJ, Stafford DW. Processive post-translational modification. Vitamin K-dependent carboxylation of a peptide substrate. J Biol Chem. 1995;270:30491–8.

    Article  CAS  PubMed  Google Scholar 

  27. Stafford DW. The vitamin K cycle. J Thromb Haemost. 2005;3(8):1873–8.

    Article  CAS  PubMed  Google Scholar 

  28. Shearer MJ, Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost. 2008;100:530–47.

    Article  CAS  PubMed  Google Scholar 

  29. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J Biol Chem. 2008;283:11270–9.

    Article  CAS  PubMed  Google Scholar 

  30. Nakagawa K, Hirota Y, Sawada N, Yuge N, Watanabe M, Uchino Y, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468:117–21.

    Article  CAS  PubMed  Google Scholar 

  31. Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem. 2013;288:33071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takada T, Yamanashi Y, Konishi K, Yamamoto T, Toyoda Y, Masuo Y, et al. NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy. Sci Transl Med. 2015;7(275):275ra23.

    Article  CAS  PubMed  Google Scholar 

  33. Tsugawa N, Shiraki M, Suhara Y, Kamao M, Ozaki R, Tanaka K, et al. Low plasma phylloquinone concentration is associated with high incidence of vertebral fracture in Japanese women. J Bone Miner Metab. 2008;26:79–85.

    Article  CAS  PubMed  Google Scholar 

  34. Iwamoto J, Takada T, Sato Y. Vitamin K nutritional status and undercarboxylated osteocalcin in postmenopausal osteoporotic women treated with bisphosphonates. Asia Pac J Clin Nutr. 2014;23(2):256–62.

    CAS  PubMed  Google Scholar 

  35. •• Hirota Y, Nakagawa K, Sawada N, Okuda N, Suhara Y, Uchino Y, et al. Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1. PLoS One. 2015;10(4):e0125737. Authors demonstrated the enzymatic function of UBIAD1 family and clarified bioactive structure.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tabb MM, Sun A, Zhou C, Grün F, Errandi J, Romero K, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem. 2003;278:43919–27.

    Article  CAS  PubMed  Google Scholar 

  37. Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem. 2006;281:16927–34.

    Article  CAS  PubMed  Google Scholar 

  38. Rezaie AR, Bae JS, Manithody C, Qureshi SH, Yang L. Protein Z-dependent protease inhibitor binds to the C-terminal domain of protein Z. J Biol Chem. 2008;283(29):19922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Price PA, Urist MR, Otawara Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun. 1983;117(3):765–71.

    Article  CAS  PubMed  Google Scholar 

  40. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047.

    Article  CAS  PubMed  Google Scholar 

  41. Coutu DL, Wu JH, Monette A, Rivard GÉ, Blostein MD, Galipeau J. Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem. 2008;283(26):17991–8001.

    Article  CAS  PubMed  Google Scholar 

  42. Viegas CS, et al. Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol. 2009;175(6):2288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Okubo Y, Masuyama R, Iwanaga A, Koike Y, Kuwatsuka Y, Ogi T, et al. Calcification in dermal fibroblasts from a patient with GGCX syndrome accompanied by upregulation of osteogenic molecules. PLoS One. 2017;12(5):e0177375. Authors demonstrated a role of GGCX in ectopic calcification in dermal fibroblasts.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lokmic Z, et al. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 2012;296:139–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritsuko Masuyama.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Oral Disease and Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, K., Okubo, Y. & Masuyama, R. Vitamin Status and Mineralized Tissue Development. Curr Oral Health Rep 5, 89–95 (2018). https://doi.org/10.1007/s40496-018-0174-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-018-0174-2

Keywords

Navigation