Skip to main content

Advertisement

Log in

Functional Salivary Gland Regenerative Therapy for Oral Health

  • Orodental Regenerative Medicine (M Bartold, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Salivary glands maintain oral health and homeostasis via functional interactions with many organs, including the teeth and the tongue. Dysfunction of salivary glands causes many problems, such as dental caries, bacterial infection, and swallowing dysfunction. Current regenerative therapy for salivary gland tissue repair and whole salivary gland replacement is currently a novel therapeutic concept that may result in full recovery of salivary gland function. The salivary glands arise from reciprocal epithelial and mesenchymal interactions. We developed a novel three-dimensional cell manipulation method that can reproduce organogenesis via the epithelial-mesenchymal interaction. The bioengineered salivary glands develop correct structure and successfully secrete saliva into the oral cavity via reestablishment of the afferent-efferent neural network. The bioengineered salivary glands also improve dry mouth symptoms, such as bacterial infections and swallowing dysfunction. This review summarizes recent findings and technological advances in salivary gland regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Edgar M, Dawes C, Mullane OD. Saliva and oral health 3rd edn. UK: British Dental Association; 2004.

    Google Scholar 

  2. Tucker AS, Miletich I. Salivary glands; development, adaptations, and disease. London: Karger; 2010.

    Book  Google Scholar 

  3. Avery JK. Oral development and histology. New York: Thieme Press; 2002. p. 292–330.

    Google Scholar 

  4. Saleh J, Figueiredo MA, Cherubini K, Salum FG. Salivary hypofunction: an update on aetiology, diagnosis and therapeutics. Arch Oral Biol. 2015;60(2):242–55.

    Article  PubMed  Google Scholar 

  5. Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME. Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys. 2010;78:983–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ship JA, Pillemer SR, Baum BJ. Xerostomia and the geriatric patient. J Am Geriatr Soc. 2002;50:535–43.

    Article  PubMed  Google Scholar 

  7. Fox PC. Salivary enhancement therapies. Caries Res. 2004;38:241–6.

    Article  PubMed  Google Scholar 

  8. Atkinson JC, Grisius M, Massey W. Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin N Am. 2005;49:309–26.

    Article  PubMed  Google Scholar 

  9. Hayashi Y, Arakaki R, Ishimaru N. Salivary gland and autoimmunity. J Med Investig. 2009;56:185–91.

    Article  Google Scholar 

  10. Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol. 2004;558:561–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kagami H, Wang S, Hai B. Restoring the function of salivary glands. Oral Dis. 2008;14:15–24.

    CAS  PubMed  Google Scholar 

  12. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.

    Article  CAS  PubMed  Google Scholar 

  13. Segers VFM, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.

    Article  CAS  PubMed  Google Scholar 

  14. •• Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3:e2063. This manuscript shows that adult stem cells derived from salivary glands can be cultured in vitro while maintaining the regenerating ability and saliva levels can be recovered by transplanting these cells to irradiated glands.

  15. Feng J, Van der Zwaag M, Stokman MA, Van Os R, Coppes RP. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92:466–71.

    Article  CAS  PubMed  Google Scholar 

  16. O’Connell AC, Baccaglini L, Fox PC, O’Connell BC, Kenshalo D, Oweisy H, Hoque AT, Sun D, Herscher LL, Braddon VR, Delporte C, Baum BJ. Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther. 1999;6(6):505–13.

    Article  PubMed  Google Scholar 

  17. • Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods. 2007;4(3):227–30. This report is the first to develop the method for reconstruction of bioengineered organ germs. By using this method, functional regeneration of teeth and hair follicles became possible.

  18. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009;106(32):13475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T. Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One. 2011;6(7):e21531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toyoshima KE, Asakawa K, Ishibashi N, Toki H, Ogawa M, Hasegawa T, Irié T, Tachikawa T, Sato A, Takeda A, Tsuji T. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nat Commun. 2012;3:784.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hirayama M, Ogawa M, Oshima M, Sekine Y, Ishida K, Yamashita K, Ikeda K, Shimmura S, Kawakita T, Tsubota K, Tsuji T. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2497.

    PubMed  PubMed Central  Google Scholar 

  22. Jiménez-Rojo L, Granchi Z, Graf D, Mitsiadis TA. Stem cell fate determination during development and regeneration of ectodermal organs. Front Physiol. 2012;3:107.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol. 2003;262(2):195–205.

    Article  CAS  PubMed  Google Scholar 

  24. Jaskoll T, Melnick M. Embryonic salivary gland branching morphogenesis. Madame Curie. 2004;13–14

  25. Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  26. Sakai T. Epithelial branching morphogenesis of salivary gland: exploration of new functional regulators. J Med Investig. 2009;56(Suppl):234–8.

    Article  Google Scholar 

  27. Hsu JC, Yamada KM. Salivary gland branching morphogenesis—recent progress and future opportunities. Int J Oral Sci. 2010;2(3):117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harunaga J, Hsu JC, Yamada KM. Dynamics of salivary gland morphogenesis. J Dent Res. 2011;90(9):1070–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Denny PC, Denny PA. Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec. 1999;254:408–17.

    Article  CAS  PubMed  Google Scholar 

  30. Man YG, Ball WD, Marchetti L, Hand AR. Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec. 2001;263(2):202–14.

    Article  CAS  PubMed  Google Scholar 

  31. Ihrler S, Zietz C, Sendelhofert A, Lang S, Blasenbreu-Vogt S, Löhrs U. A morphogenetic concept of salivary duct regeneration and metaplasia. Virchows Arch. 2002;440(5):519–26.

    Article  PubMed  Google Scholar 

  32. Lombaert IM, Hoffman MP. Stem cells in salivary gland development and regeneration. Stem cells in craniofacial development and regeneration. Hoboken: Wiley-Blackwell; 2013. p. 271–84.

    Book  Google Scholar 

  33. Takahashi S, Schoch E, Walker NI. Origin of acinar cell regeneration after atrophy of the rat parotid induced by duct obstruction. Int J Exp Pathol. 1998;79:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hisatomi Y, Okumura K, Nakamura K, Matsumoto S, Satoh A, Nagano K, Yamamoto T, Endo F. Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology. 2004;39(3):667–75.

    Article  PubMed  Google Scholar 

  35. Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y, Terada K, Sugiyama T, Umeyama K, Matsumoto K, Yamamoto T, Endo F. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology. 2003;38(1):104–13.

    Article  PubMed  Google Scholar 

  36. Okumura K, Shinohara M, Endo F. Capability of tissue stem cells to organize into salivary rudiments. Stem Cells Int. 2012;2012:502136.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nanduri LS, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol. 2011;99(3):367–72.

    Article  CAS  PubMed  Google Scholar 

  38. Sumita Y, et al. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol. 2011;43:80–7.

    Article  CAS  PubMed  Google Scholar 

  39. Rotter N, Oder J, Schlenke P. Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 2008;17(3):509–18.

    Article  CAS  PubMed  Google Scholar 

  40. Denny PC, Denny PA. Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec. 1999;254(3):408–17.

    Article  CAS  PubMed  Google Scholar 

  41. Horie K, Kagami H, Hiramatsu Y, Hata K, Shigetomi T, Ueda M. Selected salivary-gland cell culture and the effects of isoproterenol, vasoactive intestinal polypeptide and substance P. Arch Oral Biol. 1996;41(3):243–52.

    Article  CAS  PubMed  Google Scholar 

  42. Sugito T, Kagami H, Hata K, Nishiguchi H, Ueda M. Transplantation of cultured salivary gland cells into an atrophic salivary gland. Cell Transplant. 2004;13(6):691–9.

    Article  CAS  PubMed  Google Scholar 

  43. Bücheler M, Wirz C, Schütz A, Bootz F. Tissue engineering of human salivary gland organoids. Acta Otolaryngol. 2002;122(5):541–5.

    Article  PubMed  Google Scholar 

  44. Tran SD, Wang J, Bandyopadhyay BC, Redman RS, Dutra A, Pak E, Swaim WD, Gerstenhaber JA, Bryant JM, Zheng C, Goldsmith CM, Kok MR, Wellner RB, Baum BJ. Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue Eng. 2005;11(1–2):172–81.

    Article  CAS  PubMed  Google Scholar 

  45. Sun T, Zhu J, Yang X, Wang S. Growth of miniature pig parotid cells on biomaterials in vitro. Arch Oral Biol. 2006;51(5):351–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun. 2006;340(2):544–52.

    Article  CAS  PubMed  Google Scholar 

  47. •• Delporte C, O’Connell BC, He X, Lancaster HE, O’Connell AC, Agre P, Baum BJ. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A. 1997;94(7):3268–73. This manuscript shows that by it is possible to introduce AQP1 into the salivary gland using adenovirus and restore the amount of saliva.

  48. Palomino A, Hernández-Bernal F, Haedo W, Franco S, Más JA, Fernández JA, Soto G, Alonso A, González T, López-Saura P. A multicenter, randomized, double-blind clinical trial examining the effect of oral human recombinant epidermal growth factor on the healing of duodenal ulcers. Scand J Gastroenterol. 2000;35(10):1016–22.

    Article  CAS  PubMed  Google Scholar 

  49. Sonis ST, Peterson RL, Edwards LJ, Lucey CA, Wang L, Mason L, Login G, Ymamkawa M, Moses G, Bouchard P, Hayes LL, Bedrosian C, Dorner AJ. Defining mechanisms of action of interleukin-11 on the progression of radiation-induced oral mucositis in hamsters. Oral Oncol. 2000;36(4):373–81.

    Article  CAS  PubMed  Google Scholar 

  50. Dörr W, Noack R, Spekl K, Farrell CL. Modification of oral mucositis by keratinocyte growth factor: single radiation exposure. Int J Radiat Biol. 2001;77(3):341–7.

    Article  PubMed  Google Scholar 

  51. Baum BJ, Voutetakis A, Wang J. Salivary glands: novel target sites for gene therapeutics. Trends Mol Med. 2004;10(12):585–90.

    Article  CAS  PubMed  Google Scholar 

  52. Kagami H, O’Connell BC, Baum BJ. Evidence for the systemic delivery of a transgene product from salivary glands. Hum Gene Ther. 1996;7(17):2177–84.

    Article  CAS  PubMed  Google Scholar 

  53. He X, Goldsmith CM, Marmary Y, Wellner RB, Parlow AF, Nieman LK, Baum BJ. Systemic action of human growth hormone following adenovirus-mediated gene transfer to rat submandibular glands. Gene Ther. 1998;5(4):537–41.

    Article  PubMed  Google Scholar 

  54. Voutetakis A, Bossis I, Kok MR, Zhang W, Wang J, Cotrim AP, Zheng C, Chiorini JA, Nieman LK, Baum BJ. Salivary glands as a potential gene transfer target for gene therapeutics of some monogenetic endocrine disorders. J Endocrinol. 2005;185(3):363–72.

    Article  CAS  PubMed  Google Scholar 

  55. Wei C, Larsen M, Hoffman MP, Yamada KM. Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng. 2007;13(4):721–35.

    Article  CAS  PubMed  Google Scholar 

  56. Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, Nakajima K, Hirayama M, Tachikawa T, Tsuji T. Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2498.

  57. Proctor GB, Carpenter GH. Salivary secretion: mechanism and neural regulation. Monogr Oral Sci. 2014;24:14–29.

    Article  PubMed  Google Scholar 

  58. Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11:216–29.

    Article  CAS  PubMed  Google Scholar 

  59. Froehlich DA, Pangborn RM, Whitaker JR. The effect of oral stimulation on human parotid salivary flow rate and alpha-amylase secretion. Physiol Behav. 1987;41(3):209–17.

    Article  CAS  PubMed  Google Scholar 

  60. Sasano T, Satoh-Kuriwada S, Shoji N, Sekine-Hayakawa Y, Kawai M, Uneyama H. Application of umami taste stimulation to remedy hypogeusia based on reflex salivation. Biol Pharm Bull. 2010;33(11):1791–5.

    Article  CAS  PubMed  Google Scholar 

  61. Ogawa M, Yamashita K, Niikura M, Nakajima K, Toyoshima KE, Oshima M, Tsuji T. Saliva secretion in engrafted mouse bioengineered salivary glands using taste stimulation. J Prosthodont Res. 2014;58(1):17–25.

  62. Lamy E, Graca G, Costa GD, Franco C, Silva FC, Baptista ES, et al. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci. 2010;8:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962;237:1555–62.

    CAS  PubMed  Google Scholar 

  64. Sreebny LM, Schwartz SS. A reference guide to drugs and dry mouth—2nd edition. Gerodontology. 1997;14(1):33–47.

    Article  CAS  PubMed  Google Scholar 

  65. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12(4):243–52.

    Article  CAS  PubMed  Google Scholar 

  67. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2010;19(4):469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for KIBAN (A) from the Ministry of Education, Culture, Sports and Technology (no. 25242041). This work was also partially supported by Organ Technologies Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuji.

Ethics declarations

Conflict of Interest

M. Ogawa declares that he has no conflict of interest. T. Tsuji reports a Grant-in-Aid for KIBAN (A) from the Ministry of Education, Culture, Sports, and Technology (no. 25242041) and a grant from Organ Technologies Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the topical collection on Orodental Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, M., Tsuji, T. Functional Salivary Gland Regenerative Therapy for Oral Health. Curr Oral Health Rep 4, 44–50 (2017). https://doi.org/10.1007/s40496-017-0123-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-017-0123-5

Keywords

Navigation