Skip to main content

Advertisement

Log in

Interaction Between Natural Products and Gut Microbiota

  • Natural Products: From Chemistry to Pharmacology (Z-Y Su, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper presents a brief overview of the potential interaction and interaction mechanisms between natural products and gut microbiota.

Recent Findings

Natural products are often described as small molecules and/or secondary metabolites produced by living organisms. They have been important parts of traditional medicine since ancient times and they can show various promising pharmacological effects such as antioxidant, anti-inflammatory, and antimicrobial cardioprotective and anticarcinogenic effects. Moreover, it has been recently discovered that natural products and their bioactive compounds can change the composition-diversity and the metabolites of the gut microbiota, and intestinal tight junction protein structure, mucosal immunology, and gut homeostasis which may affect the development and prognosis of certain diseases, and this microbiota-natural product interaction is bidirectional. Besides, natural products can regulate dysbiosis and promote systemic inflammation caused by endotoxemia by various biological mechanisms. However, the unique chemical structure of each natural product differentiates their effects on gut microbiota modulation and indirectly affects health and disease outcomes.

Summary

In this paper, we have briefly reviewed about the interaction between gut microbiota and most popular natural products as phytochemicals origin of medicinal herbal and dietary products, lipid and lipid derivatives as dietary fat and oils, bioactive lipids, plant-derived essential oils and sterols, and biotics as prebiotics and probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Walsh CT, Tang Y. Natural product biosynthesis: chemical logic and enzymatic machinery Chapter 1: major classes of natural products scaffolds and enzymatic biosynthetic machinery. Published by Royal Society of Chemistry, 2017.

  2. Roberts JD, Caserio MC . Book: Basic principles of organic chemistry (Roberts and Caserio), 2021. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Basic_Principles_of_Organic_Chemistry_(Roberts_and_Caserio)/30%3A_Natural_Products_and_Biosynthesis. Accessed 27 Aug 2022

  3. Berdy J. Bioactive microbial metabolites. J Antibiot. 2005;58(1):1–26.

    Article  CAS  Google Scholar 

  4. Medema MH, Fischbach MA. Computational approaches to natural product discovery. Nat Chem Biol. 2015;11(9):639–48.

    Article  CAS  Google Scholar 

  5. Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, et al. Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol. 2019;17(3):247–67.

    Article  CAS  Google Scholar 

  6. Sorokina M, Steinbeck C. Review on natural products databases: where to find data in 2020. J Chem Info. 2020;12(1):1–51.

    Google Scholar 

  7. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules (Basel, Switzerland). 2016;21(5):559.

    Article  Google Scholar 

  8. Feng W, Ao H, Peng C, Yan D. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res. 2019;142:176–91.

    Article  CAS  Google Scholar 

  9. •• Dey P. Targeting gut barrier dysfunction with phytotherapies: effective strategy against chronic diseases. Pharmacol Res. 2020;161:105135. This article provides a rationale for targeting gut barrier dysfunction by phytotherapies for treating chronic diseases that are associated with endotoxemia-induced systemic inflammation

    Article  CAS  Google Scholar 

  10. Fakhri S, Yarmohammadi A, Yarmohammadi M, Farzaei MH, Echeverria J. Marine natural products: promising candidates in the modulation of gut-brain axis towards neuroprotection. Mar Drugs. 2021;19(3):165.

    Article  CAS  Google Scholar 

  11. Dey P. Gut microbiota in phytopharmacology: a comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res. 2019;147:104367.

    Article  CAS  Google Scholar 

  12. Macdonald RS, Wagner K. Influence of dietary phytochemicals and microbiota on colon cancer risk. J Agric Food Chem. 2012;60(27):6728–35. https://doi.org/10.1021/jf204230r.

    Article  CAS  Google Scholar 

  13. Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci. 2021;22(3):1219. https://doi.org/10.3390/ijms22031219.

    Article  CAS  Google Scholar 

  14. Sharma M, Kaushik P. Vegetable phytochemicals: an update on extraction and analysis techniques. Biocatal Agric Biotechnol. 2021;36: 102149. https://doi.org/10.1016/j.bcab.2021.102149.

    Article  CAS  Google Scholar 

  15. Shabbir U, Rubab M, Daliri EB-M, Chelliah R, Javed A, Oh D-H. Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota. Nutrients. 2021;13(1):206. https://doi.org/10.3390/nu13010206.

    Article  CAS  Google Scholar 

  16. Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: the role of bioavailability. Nutrients. 2021;13(1):273. https://doi.org/10.3390/nu13010273.

    Article  CAS  Google Scholar 

  17. Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. The effects of polyphenols and other bioactives on human health. Food Funct. 2019;10(2):514–28. https://doi.org/10.1039/c8fo01997e.

    Article  CAS  Google Scholar 

  18. Sarker U, Oba S. Leaf pigmentation, its profiles and radical scavenging activity in selected Amaranthus tricolor leafy vegetables. Sci Rep. 2020;10(1):1–10.

    CAS  Google Scholar 

  19. Ruhee RT, Roberts LA, Ma S, Suzuki K. Organosulfur compounds: a review of their anti-inflammatory effects in human health. Front Nutr. 2020;7:64.

    Article  Google Scholar 

  20. Poojary MM, Putnik P, Kovačević DB, Barba FJ, Lorenzo JM, Dias DA, et al. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J Food Compos Anal. 2017;61:28–39.

    Article  CAS  Google Scholar 

  21. Avato P, Argentieri M. Brassicaceae: a rich source of health improving phytochemicals. Phytochem Rev. 2015;14(6):1019–33.

    Article  CAS  Google Scholar 

  22. Idrees N, Tabassum B, Sarah R, Hussain MK. Natural compound from genus brassica and their therapeutic activities. Natural bio-active compounds. Springer. 2019;477–91. https://doi.org/10.1007/978-981-13-7154-7_15.

  23. Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, et al. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. Age. 2012;34(2):281–93.

    Article  CAS  Google Scholar 

  24. Sharifi-Rad J, Cristina Cirone Silva N, Jantwal A, D Bhatt I, Sharopov F, C Cho W, et al. Therapeutic potential of allicin-rich garlic preparations: emphasis on clinical evidence toward upcoming drugs formulation. Applied Sciences. 2019;9(24):5555.

  25. Londhe V, Gavasane A, Nipate S, Bandawane D, Chaudhari P. Role of garlic (Allium sativum) in various diseases: an overview. Angiogenesis. 2011;12:13.

    Google Scholar 

  26. Rehman S, Khan H. Advances in antioxidant potential of natural alkaloids. Curr Bioact Compd. 2017;13(2):101–8.

    Article  CAS  Google Scholar 

  27. El Aziz M, Ashour A, Melad A. A review on saponins from medicinal plants: chemistry, isolation, and determination. J Nanomed Res. 2019;8(1):282–8.

    Google Scholar 

  28. Bergman ME, Davis B, Phillips MA. Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules. 2019;24(21):3961.

    Article  CAS  Google Scholar 

  29. Gowd V, Karim N, Shishir MRI, Xie L, Chen W. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends Food Sci Technol. 2019;93:81–93. https://doi.org/10.1016/j.tifs.2019.09.005.

    Article  CAS  Google Scholar 

  30. •• Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8. This review discussed the main gut microorganisms, and microbial pathways associated with the metabolism of dietary carbohydrates (to short-chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins.

    Article  CAS  Google Scholar 

  31. Ganesan K, Jayachandran M, Xu B. Diet-derived phytochemicals targeting colon cancer stem cells and microbiota in colorectal cancer. Int J Mol Sci. 2020;21(11):3976. https://doi.org/10.3390/ijms21113976.

    Article  CAS  Google Scholar 

  32. Carrera-Quintanar L, López Roa RI, Quintero-Fabián S, Sánchez-Sánchez MA, Vizmanos B, Ortuño-Sahagún D. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators Inflamm. 2018;9734845. https://doi.org/10.1155/2018/9734845.

  33. Zhao L, Zhang Q, Ma W, Tian F, Shen H, Zhou M. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct. 2017;8(12):4644–56. https://doi.org/10.1039/c7fo01383c.

    Article  CAS  Google Scholar 

  34. Lan H, Hong W, Qian D, Peng F, Li H, Liang C, et al. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered. 2021;12(1):6240–50. https://doi.org/10.1080/21655979.2021.1969194.

    Article  CAS  Google Scholar 

  35. Wang T, Wu Q, Zhao T. Preventive effects of kaempferol on high-fat diet-induced obesity complications in C57BL/6 Mice. Bio Med Res Int. 2020;4532482. https://doi.org/10.1155/2020/4532482.

  36. Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Curcumin and its potential impact on microbiota. Nutrients. 2021;13(6):2004. https://doi.org/10.3390/nu13062004.

    Article  CAS  Google Scholar 

  37. Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y, et al. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB Axis. Front Immunol. 2021;12:679897. https://doi.org/10.3389/fimmu.2021.679897.

    Article  CAS  Google Scholar 

  38. Bian Y, Lei J, Zhong J, Wang B, Wan Y, Li J, et al. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J Nutr Biochem. 2022;99:108840. https://doi.org/10.1016/j.jnutbio.2021.108840.

    Article  CAS  Google Scholar 

  39. Scazzocchio B, Minghetti L, D’Archivio M. Interaction between gut microbiota and curcumin: a new key of understanding for the health effects of curcumin. Nutrients. 2020;12(9):2499. https://doi.org/10.3390/nu12092499.

    Article  CAS  Google Scholar 

  40. Park JM, Shin Y, Kim SH, Jin M, Choi JJ. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: Lactobacillus is a putative target. J Med Food. 2020;23(10):1033–42. https://doi.org/10.1089/jmf.2020.4700.

    Article  CAS  Google Scholar 

  41. Ma Y, Liu G, Tang M, Fang J, Jiang H. Epigallocatechin gallate can protect mice from acute stress induced by LPS while stabilizing gut microbes and serum metabolites levels. Frontiers in immunology. 2021;12:640305. https://doi.org/10.3389/fimmu.2021.640305.

    Article  CAS  Google Scholar 

  42. Li S, You J, Wang Z, Liu Y, Wang B, Du M, et al. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res Int. 2021;143:110270. https://doi.org/10.1016/j.foodres.2021.110270.

    Article  CAS  Google Scholar 

  43. Islam T, Koboziev I, Albracht-Schulte K, Mistretta B, Scoggin S, Yosofvand M, et al. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice. Mol Nutr Food Res. 2021;65(22):e2100274. https://doi.org/10.1002/mnfr.202100274.

    Article  CAS  Google Scholar 

  44. Huang J, Guan B, Lin L, Wang Y. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered. 2021;12(2):11947–58. https://doi.org/10.1080/21655979.2021.2009322.

    Article  CAS  Google Scholar 

  45. Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes (Lond). 2020;44(1):213–25. https://doi.org/10.1038/s41366-019-0332-1.

    Article  CAS  Google Scholar 

  46. Cai T-T, Ye X-L, Li R-R, Chen H, Wang Y-Y, Yong H-J, et al. Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice. Front Pharmacol. 2020;11:1249. https://doi.org/10.3389/fphar.2020.01249.

    Article  CAS  Google Scholar 

  47. Shi T, Bian X, Yao Z, Wang Y, Gao W, Guo C. Quercetin improves gut dysbiosis in antibiotic-treated mice. Food Funct. 2020;11(9):8003–13. https://doi.org/10.1039/d0fo01439g.

    Article  CAS  Google Scholar 

  48. Yang R, Jia Q, Mehmood S, Ma S, Liu X. Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. Eur J Nutr. 2021;60(4):2155–68. https://doi.org/10.1007/s00394-020-02403-0.

    Article  CAS  Google Scholar 

  49. López P, Sánchez M, Perez-Cruz C, Velázquez-Villegas LA, Syeda T, Aguilar-López M, et al. Long-term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high-fat diet. Mol Nutr Food Res. 2018;62(16):e1800313. https://doi.org/10.1002/mnfr.201800313.

    Article  CAS  Google Scholar 

  50. Zhao B, Wu J, Li J, Bai Y, Luo Y, Ji B, et al. Lycopene alleviates DSS-induced colitis and behavioral disorders via mediating microbes-gut-brain axis balance. J Agric Food Chem. 2020;68(13):3963–75. https://doi.org/10.1021/acs.jafc.0c00196.

    Article  CAS  Google Scholar 

  51. Xia H, Liu C, Li CC, Fu M, Takahashi S, Hu KQ, et al. Dietary tomato powder inhibits high-fat diet-promoted hepatocellular carcinoma with alteration of gut microbiota in mice lacking carotenoid cleavage enzymes. Cancer Prev Res (Phila). 2018;11(12):797–810. https://doi.org/10.1158/1940-6207.Capr-18-0188.

    Article  CAS  Google Scholar 

  52. Schmidt KM, Haddad EN, Sugino KY, Vevang KR, Peterson LA, Koratkar R, et al. Dietary and plasma carotenoids are positively associated with alpha diversity in the fecal microbiota of pregnant women. J Food Sci. 2021;86(2):602–13. https://doi.org/10.1111/1750-3841.15586.

    Article  CAS  Google Scholar 

  53. Busbee PB, Menzel L, Alrafas HR, Dopkins N, Becker W, Miranda K, et al. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight. 2020;5(1):e127551. https://doi.org/10.1172/jci.insight.127551.

    Article  Google Scholar 

  54. Wu Y, Li RW, Huang H, Fletcher A, Yu L, Pham Q, et al. Inhibition of tumor growth by dietary indole-3-carbinol in a prostate cancer xenograft model may be associated with disrupted gut microbial interactions. Nutrients. 2019;11(2):467. https://doi.org/10.3390/nu11020467.

    Article  CAS  Google Scholar 

  55. Wang Y, Tong Q, Ma SR, Zhao ZX, Pan LB, Cong L, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct Target Ther. 2021;6(1):77. https://doi.org/10.1038/s41392-020-00456-5.

    Article  CAS  Google Scholar 

  56. Wu M, Yang S, Wang S, Cao Y, Zhao R, Li X, et al. Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice. Front Pharmacol. 2020;11:223. https://doi.org/10.3389/fphar.2020.00223.

    Article  CAS  Google Scholar 

  57. Liu J, Hao W, He Z, Kwek E, Zhu H, Ma N, et al. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur J Nutr. 2021;60(5):2735–46. https://doi.org/10.1007/s00394-020-02446-3.

    Article  CAS  Google Scholar 

  58. Liu P, Zhou W, Xu W, Peng Y, Yan Y, Lu L, et al. The main anthocyanin monomer from lycium ruthenicum murray fruit mediates obesity via modulating the gut microbiota and improving the intestinal barrier. Foods. 2021;11(1):98. https://doi.org/10.3390/foods11010098.

  59. Liu YJ, Tang B, Wang FC, Tang L, Lei YY, Luo Y, et al. Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Theranostics. 2020;10(12):5225–41. https://doi.org/10.7150/thno.43716.

    Article  CAS  Google Scholar 

  60. Hong MK, Liu HH, Chen GH, Zhu JQ, Zheng SY, Zhao D, et al. Oridonin alters hepatic urea cycle via gut microbiota and protects against acetaminophen-induced liver injury. Oxid Med Cell Longev. 2021;2021:3259238. https://doi.org/10.1155/2021/3259238.

    Article  CAS  Google Scholar 

  61. Zhu HC, Jia XK, Fan Y, Xu SH, Li XY, Huang MQ, et al. Alisol B 23-acetate ameliorates azoxymethane/dextran sodium sulfate-induced male murine colitis-associated colorectal cancer via modulating the composition of gut microbiota and improving intestinal barrier. Front Cell Infect Microbiol. 2021;11:640225. https://doi.org/10.3389/fcimb.2021.640225.

    Article  CAS  Google Scholar 

  62. Gregory J, Vengalasetti YV, Bredesen DE, Rao RV. Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules. 2021;11(4):543. https://doi.org/10.3390/biom11040543.

    Article  CAS  Google Scholar 

  63. Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, et al. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185(S4):S1-s24. https://doi.org/10.5694/j.1326-5377.2006.tb00548.x.

    Article  Google Scholar 

  64. Zhong Z, Qiang WW, Tan W, Zhang H, Wang S, Wang C, et al. Chinese herbs interfering with cancer reprogramming metabolism. Evid Based Complement Alternat Med. 2016;2016:9282813. https://doi.org/10.1155/2016/9282813.

    Article  Google Scholar 

  65. Pang G-M, Li F-X, Yan Y, Zhang Y, Kong L-L, Zhu P, et al. Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chin Med J (Engl). 2019;132(1):78–85. https://doi.org/10.1097/CM9.0000000000000006.

    Article  CAS  Google Scholar 

  66. Lyu M, Wang YF, Fan GW, Wang XY, Xu SY, Zhu Y. Balancing herbal medicine and functional food for prevention and treatment of cardiometabolic diseases through modulating gut microbiota. Front Microbiol. 2017;8:2146. https://doi.org/10.3389/fmicb.2017.02146.

    Article  Google Scholar 

  67. Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. Herbal medicine for depression and anxiety: a systematic review with assessment of potential psycho-oncologic relevance. Phytother Res. 2018;32(5):865–91. https://doi.org/10.1002/ptr.6033.

    Article  Google Scholar 

  68. Jia Q, Wang L, Zhang X, Ding Y, Li H, Yang Y, et al. Prevention and treatment of chronic heart failure through traditional Chinese medicine: role of the gut microbiota. Pharmacol Res. 2020;151:104552. https://doi.org/10.1016/j.phrs.2019.104552.

    Article  CAS  Google Scholar 

  69. Bu L, Dai O, Zhou F, Liu F, Chen J-F, Peng C, et al. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother. 2020;132:110855. https://doi.org/10.1016/j.biopha.2020.110855.

    Article  CAS  Google Scholar 

  70. Chen Z, Lv Y, Xu H, Deng L. Herbal medicine, gut microbiota, and COVID-19. Front Pharmacol. 2021;12:646560. https://doi.org/10.3389/fphar.2021.646560.

    Article  CAS  Google Scholar 

  71. Anlu W, Dongcheng C, He Z, Qiuyi L, Yan Z, Yu Q, et al. Using herbal medicine to target the “microbiota-metabolism-immunity” axis as possible therapy for cardiovascular disease. Pharmacol Res. 2019;142:205–22.

    Article  Google Scholar 

  72. Lin T-L, Lu C-C, Lai W-F, Wu T-S, Lu J-J, Chen Y-M, et al. Role of gut microbiota in identification of novel TCM-derived active metabolites. Protein Cell. 2021;12(5):394–410. https://doi.org/10.1007/s13238-020-00784-w.

    Article  Google Scholar 

  73. Zhao X, Oduro PK, Tong W, Wang Y, Gao X, Wang Q. Therapeutic potential of natural products against atherosclerosis: targeting on gut microbiota. Pharmacol Res. 2021;163:105362. https://doi.org/10.1016/j.phrs.2020.105362.

    Article  CAS  Google Scholar 

  74. Hu J, Huang H, Che Y, Ding C, Zhang L, Wang Y, et al. Qingchang Huashi Formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function. J Ethnopharmacol. 2021;266:113394. https://doi.org/10.1016/j.jep.2020.113394.

    Article  CAS  Google Scholar 

  75. Shin NR, Gu N, Choi HS, Kim H. Combined effects of Scutellaria baicalensis with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. Am J Physiol Endocrinol Metab. 2020;318(1):E52-e61. https://doi.org/10.1152/ajpendo.00221.2019.

    Article  CAS  Google Scholar 

  76. Qu Q, Yang F, Zhao C, Liu X, Yang P, Li Z, et al. Effects of fermented ginseng on the gut microbiota and immunity of rats with antibiotic-associated diarrhea. J Ethnopharmacol. 2021;267:113594. https://doi.org/10.1016/j.jep.2020.113594.

    Article  CAS  Google Scholar 

  77. •• Peterson CT. Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: the promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics. J Evid Based Integr Med. 2020;25:2515690X20957225–2515690X. https://doi.org/10.1177/2515690X20957225. This article reviewed the therapeutic modulation microbiota-gut-brain axis in neurodegenerative disease with medicinal herbs and biotics like prebiotics and probiotics.

  78. Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. Isme j. 2015;9(3):552–62. https://doi.org/10.1038/ismej.2014.177.

    Article  Google Scholar 

  79. Hussain A, Yadav MK, Bose S, Wang JH, Lim D, Song YK, et al. Daesiho-Tang is an effective herbal formulation in attenuation of obesity in mice through alteration of gene expression and modulation of intestinal microbiota. PLoS ONE. 2016;11(11):e0165483. https://doi.org/10.1371/journal.pone.0165483.

    Article  CAS  Google Scholar 

  80. Li Q, Cui Y, Xu B, Wang Y, Lv F, Li Z, et al. Main active components of Jiawei Gegen Qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner. Pharmacol Res. 2021;170:105694. https://doi.org/10.1016/j.phrs.2021.105694.

    Article  CAS  Google Scholar 

  81. Yue SJ, Wang WX, Zhang L, Liu J, Feng WW, Gao H, et al. Anti-obesity and gut microbiota modulation effect of astragalus polysaccharides combined with berberine on high-fat diet-fed obese mice. Chin J Integr Med. 2021. https://doi.org/10.1007/s11655-021-3303-z.

  82. Liu B, Piao X, Niu W, Zhang Q, Ma C, Wu T, et al. Kuijieyuan decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/NF-κB oxidative and inflammatory signaling and gut microbiota. Front Pharmacol. 2020;11:1036. https://doi.org/10.3389/fphar.2020.01036.

    Article  CAS  Google Scholar 

  83. •• Thumann TA, Pferschy-Wenzig EM, Moissl-Eichinger C, Bauer R. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. J Ethnopharmacol. 2019;245:112153. https://doi.org/10.1016/j.jep.2019.112153. This article provides the role of gut microbiota for the activity of traditional medicinal plants used in the European Union for gastrointestinal.

  84. Charen E, Harbord N. Toxicity of Herbs, Vitamins, and Supplements. Adv Chronic Kidney Dis. 2020;27(1):67–71. https://doi.org/10.1053/j.ackd.2019.08.003.

    Article  Google Scholar 

  85. Yeung KS, Gubili J, Mao JJ. Herb-drug interactions in cancer care. Oncology (Williston Park). 2018;32(10):516–20.

    Google Scholar 

  86. Ye Z, Xu Y-J, Liu Y. Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: a review. Trends Food Sci Technol. 2021;113:255–76.

    Article  CAS  Google Scholar 

  87. Moreira APB, Texeira TFS, Ferreira AB, Peluzio MdCG, Alfenas RdCG. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108(5):801–9.

    Article  CAS  Google Scholar 

  88. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658–68.

    Article  CAS  Google Scholar 

  89. De Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol-Gastrointest Liver Phys. 2012;303(5):589–99.

    Article  Google Scholar 

  90. Mandal S, Godfrey KM, McDonald D, Treuren WV, Bjørnholt JV, Midtvedt T, et al. Fat and vitamin intakes during pregnancy have stronger relations with a pro-inflammatory maternal microbiota than does carbohydrate intake. Microbiome. 2016;4(1):1–11.

    Article  Google Scholar 

  91. Fava F, Gitau R, Griffin BA, Gibson G, Tuohy K, Lovegrove J. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’population. Int J Obes. 2013;37(2):216–23.

    Article  CAS  Google Scholar 

  92. Röytiö H, Mokkala K, Vahlberg T, Laitinen K. Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. Br J Nutr. 2017;118(5):343–52.

    Article  Google Scholar 

  93. Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, et al. High-fat, Western-style diet, systemic inflammation, and gut microbiota: a narrative review. Cells. 2021;10(11):3164. https://doi.org/10.3390/cells10113164.

    Article  CAS  Google Scholar 

  94. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13(1):1–15.

    Article  Google Scholar 

  95. Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, et al. Mediterranean diet pyramid today Science and cultural updates. Public health nutrition. 2011;14(12A):2274–84.

    Article  Google Scholar 

  96. Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia M, Panagiotakos DB, et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117(12):1645–55.

    Article  CAS  Google Scholar 

  97. Mokkala K, Houttu N, Cansev T, Laitinen K. Interactions of dietary fat with the gut microbiota: evaluation of mechanisms and metabolic consequences. Clin Nutr. 2020;39(4):994–1018.

    Article  CAS  Google Scholar 

  98. Haro C, Montes-Borrego M, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol. 2016;101(1):233–42.

    Article  CAS  Google Scholar 

  99. Hidalgo M, Prieto I, Abriouel H, Cobo A, Benomar N, Gálvez A, et al. Effect of virgin and refined olive oil consumption on gut microbiota. Food Res Int. 2014;64:553–9.

    Article  CAS  Google Scholar 

  100. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128.

    Article  Google Scholar 

  101. Simopoulos AP. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac J Clin Nutr. 2008;17(S1):131–34.

  102. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79.

    Article  CAS  Google Scholar 

  103. Jungheim ES, Frolova AI, Jiang H, Riley JK. Relationship between serum polyunsaturated fatty acids and pregnancy in women undergoing in vitro fertilization. J Clin Endocrinol Metab. 2013;98(8):E1364–8.

    Article  CAS  Google Scholar 

  104. Warner DR, Warner JB, Hardesty JE, Song YL, King TN, Kang JX, et al. Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. J Lipid Res. 2019;60(12):2034–49. https://doi.org/10.1194/jlr.RA119000200.

    Article  CAS  Google Scholar 

  105. Kaliannan K, Wang B, Li X-Y, Kim K-J, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5:11276. https://doi.org/10.1038/srep11276.

    Article  CAS  Google Scholar 

  106. Xu Y, Zhu Y, Li X, Sun B. Dynamic balancing of intestinal short-chain fatty acids: the crucial role of bacterial metabolism. Trends Food Sci Technol. 2020;100:118–30.

    Article  CAS  Google Scholar 

  107. Descamps HC, Herrmann B, Wiredu D, Thaiss CA. The path toward using microbial metabolites as therapies. EBioMedicine. 2019;44:747–54.

    Article  Google Scholar 

  108. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–52.

    Article  CAS  Google Scholar 

  109. Selmin OI, Papoutsis AJ, Hazan S, Smith C, Greenfield N, Donovan MG, et al. ɷ-6 high fat diet induces gut microbiome dysbiosis and colonic inflammation. Int J Mol Sci. 2021;22(13):6919.

    Article  CAS  Google Scholar 

  110. Miao Z, Lin J-S, Mao Y, Chen G-D, Zeng F-F, Dong H-L, et al. Erythrocyte ɷ-6 polyunsaturated fatty acids, gut microbiota, and incident type 2 diabetes: a prospective cohort study. Diabetes Care. 2020;43(10):2435–43. https://doi.org/10.2337/dc20-0631.

    Article  CAS  Google Scholar 

  111. Fu Y, Wang Y, Gao H, Li D, Jiang R, Ge L, et al. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediators Inflamm. 2021;2021:8879227. https://doi.org/10.1155/2021/8879227.

    Article  CAS  Google Scholar 

  112. Rousseau G. Microbiota, a new playground for the omega-3 polyunsaturated fatty acids in cardiovascular diseases. Mar Drugs. 2021;19(2):54. https://doi.org/10.3390/md19020054.

    Article  CAS  Google Scholar 

  113. Noriega BS, Sanchez-Gonzalez MA, Salyakina D, Coffman J. Understanding the impact of omega-3 rich diet on the gut microbiota. Case Rep Med. 2016;2016:3089303. https://doi.org/10.1155/2016/3089303.

    Article  Google Scholar 

  114. Shama S, Liu W. Omega-3 fatty acids and gut microbiota: a reciprocal interaction in nonalcoholic fatty liver disease. Dig Dis Sci. 2020;65(3):906–10. https://doi.org/10.1007/s10620-020-06117-5.

    Article  CAS  Google Scholar 

  115. García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, et al. Nutritional components in Western diet versus Mediterranean diet at the gut microbiota-immune system interplay. Implications Health Dis Nutri. 2021;13(2):699. https://doi.org/10.3390/nu13020699.

    Article  CAS  Google Scholar 

  116. Luu NT, Madden J, Calder PC, Grimble RF, Shearman CP, Chan T, et al. Dietary supplementation with fish oil modifies the ability of human monocytes to induce an inflammatory response. J Nutr. 2007;137(12):2769–74. https://doi.org/10.1093/jn/137.12.2769.

    Article  CAS  Google Scholar 

  117. Cao W, Wang C, Chin Y, Chen X, Gao Y, Yuan S, et al. DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food Funct. 2019;10(1):277–88. https://doi.org/10.1039/c8fo01404c.

    Article  CAS  Google Scholar 

  118. Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci. 2017;18(12):2645.

    Article  Google Scholar 

  119. Kaliannan K, Wang B, Li X-Y, Kim K-J, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5(1):1–17.

    Article  Google Scholar 

  120. Brown LH, Mutch DM. Mechanisms underlying N3-PUFA regulation of white adipose tissue endocrine function. Curr Opin Pharmacol. 2020;52:40–6.

    Article  CAS  Google Scholar 

  121. Ajabnoor SM, Thorpe G, Abdelhamid A, Hooper L. Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr. 2021;60(5):2293–316.

    Article  CAS  Google Scholar 

  122. Horigome A, Okubo R, Hamazaki K, Kinoshita T, Katsumata N, Uezono Y, et al. Association between blood omega-3 polyunsaturated fatty acids and the gut microbiota among breast cancer survivors. Benef Microbes. 2019;10(7):751–8. https://doi.org/10.3920/bm2019.0034.

    Article  CAS  Google Scholar 

  123. den Hartigh LJ. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: a review of pre-clinical and human trials with current perspectives. Nutrients. 2019;11(2):370.

    Article  Google Scholar 

  124. Koba K, Yanagita T. Beneficial effects of conjugated linoleic acid. Nutrigenomics and Proteomics in Health and Disease. 2009;85. https://doi.org/10.1002/9780813807263.ch7.

  125. Marques TM, Wall R, O’Sullivan O, Fitzgerald GF, Shanahan F, Quigley EM, et al. Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. Br J Nutr. 2015;113(5):728–38.

    Article  CAS  Google Scholar 

  126. Chaplin A, Parra P, Serra F, Palou A. Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS ONE. 2015;10(4):e0125091.

    Article  Google Scholar 

  127. Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, Shaykhutdinov R, et al. Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR γ to suppress colitis. PLoS ONE. 2012;7(2):e31238.

    Article  CAS  Google Scholar 

  128. Patterson E, RM OD, Murphy EF, Wall R, O OS, Nilaweera K, et al. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr. 2014;111(11):1905–17. https://doi.org/10.1017/s0007114514000117

  129. Pacheco YM, López S, Bermúdez B, Abia R, Villar J, Muriana FJ. A meal rich in oleic acid beneficially modulates postprandial sICAM-1 and sVCAM-1 in normotensive and hypertensive hypertriglyceridemic subjects. J Nutr Biochem. 2008;19(3):200–5. https://doi.org/10.1016/j.jnutbio.2007.03.002.

    Article  CAS  Google Scholar 

  130. Hua Y, Fan R, Zhao L, Tong C, Qian X, Zhang M, et al. Trans-fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. Br J Nutr. 2020;124(12):1251–63. https://doi.org/10.1017/s0007114520001841.

    Article  CAS  Google Scholar 

  131. Okamura T, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, et al. Trans fatty acid intake induces intestinal inflammation and impaired glucose tolerance. Front Immunol. 2021;12:669672. https://doi.org/10.3389/fimmu.2021.669672.

    Article  CAS  Google Scholar 

  132. Ge Y, Liu W, Tao H, Zhang Y, Liu L, Liu Z, et al. Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice. Eur J Nutr. 2019;58(7):2625–38. https://doi.org/10.1007/s00394-018-1810-2.

    Article  CAS  Google Scholar 

  133. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci. 2008;105(36):13580–5.

    Article  CAS  Google Scholar 

  134. van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021;29(8):700–12.

    Article  Google Scholar 

  135. Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med. 2022;28 (3):223–36. https://doi.org/10.1016/j.molmed.2021.12.006.

  136. Yan X, Jin J, Su X, Yin X, Gao J, Wang X, et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ Res. 2020;126(7):839–53.

    Article  CAS  Google Scholar 

  137. Miyamoto J, Igarashi M, Watanabe K, Karaki S-i, Mukouyama H, Kishino S, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10(1):1–15.

    Article  Google Scholar 

  138. Ikeguchi S, Izumi Y, Kitamura N, Kishino S, Ogawa J, Akaike A, et al. Inhibitory effect of the gut microbial linoleic acid metabolites, 10-oxo-trans-11-octadecenoic acid and 10-hydroxy-cis-12-octadecenoic acid, on BV-2 microglial cell activation. J Pharmacol Sci. 2018;138(1):9–15.

    Article  CAS  Google Scholar 

  139. Brown EM, Ke X, Hitchcock D, Jeanfavre S, Avila-Pacheco J, Nakata T, et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe. 2019;25(5):668–80.

    Article  CAS  Google Scholar 

  140. Johnson EL, Heaver SL, Waters JL, Kim BI, Bretin A, Goodman AL, et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun. 2020;11(1):1–11.

    Article  Google Scholar 

  141. An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156(1–2):123–33.

    Article  CAS  Google Scholar 

  142. Carpena M, Nuñez-Estevez B, Soria-Lopez A, Garcia-Oliveira P, Prieto MA. Essential oils and their application on active packaging systems: a review. Resources. 2021;10(1):7.

    Article  Google Scholar 

  143. Falleh H, Jemaa MB, Saada M, Ksouri R. Essential oils: a promising eco-friendly food preservative. Food Chem. 2020;330:127268.

    Article  CAS  Google Scholar 

  144. Stephane FFY, Jules BKJ. Terpenoids as important bioactive constituents of essential oils. Essential Oils-Bioactive Compounds, New Perspectives and Applications. IntechOpen. 2020;13:100217. https://doi.org/10.1016/j.fochx.2022.100217.

  145. Dajic Stevanovic Z, Sieniawska E, Glowniak K, Obradovic N, Pajic-Lijakovic I. Natural macromolecules as carriers for essential oils: from extraction to biomedical application. Front Bioeng Biotechnol. 2020;8:563. https://doi.org/10.3389/fbioe.2020.00563.

  146. Unusan N. Essential oils and microbiota: implications for diet and weight control. Trends Food Sci Technol. 2020;104:60–71.

    Article  CAS  Google Scholar 

  147. da Silva JKR, Figueiredo PLB, Byler KG, Setzer WN. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: an in-silico investigation. Int J Mol Sci. 2020;21(10):3426.

    Article  Google Scholar 

  148. Mediratta P, Sharma K, Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol. 2002;80(1):15–20.

    Article  CAS  Google Scholar 

  149. Worwood VA. The complete book of essential oils and aromatherapy, revised and expanded: over 800 natural, nontoxic, and fragrant recipes to create health, beauty, and safe home and work environments. New World Library 2016;

  150. Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, et al. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog. 2019;134:103580.

    Article  CAS  Google Scholar 

  151. Garcia-Llatas G, Alegria A, Barberá R, Cilla A. Current methodologies for phytosterol analysis in foods. Microchem J. 2021;168:106377.

    Article  CAS  Google Scholar 

  152. Moreau RA, Nyström L, Whitaker BD, Winkler-Moser JK, Baer DJ, Gebauer SK, et al. Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res. 2018;70:35–61.

    Article  CAS  Google Scholar 

  153. Cedó L, Farràs M, Lee-Rueckert M. Molecular insights into the mechanisms underlying the cholesterol-lowering effects of phytosterols. Curr Med Chem. 2019;26(37):6704–23.

    Article  Google Scholar 

  154. González-Larena M, García-Llatas G, Vidal MC, Sánchez-Siles LM, Barberá R, Lagarda MJ. Stability of plant sterols in ingredients used in functional foods. J Agric Food Chem. 2011;59(8):3624–31.

    Article  Google Scholar 

  155. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut microbes. 2012;3(4):289–306.

    Article  Google Scholar 

  156. Li X, Zhang Z, Cheng J, Diao C, Yan Y, Liu D, et al. Dietary supplementation of soybean-derived sterols regulates cholesterol metabolism and intestinal microbiota in hamsters. J Funct Foods. 2019;59:242–50.

    Article  Google Scholar 

  157. Wang H, Liu D, Ji Y, Liu Y, Xu L, Guo Y. Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high-fat and cholesterol diet. Mol Nutr Food Res. 2020;64(8):1900876.

    Article  CAS  Google Scholar 

  158. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172–84. https://doi.org/10.1080/19490976.2017.1290756.

    Article  CAS  Google Scholar 

  159. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021. https://doi.org/10.3390/nu9091021.

    Article  CAS  Google Scholar 

  160. Rezende ESV, Lima GC, Naves MMV. Dietary fibers as beneficial microbiota modulators: a proposed classification by prebiotic categories. Nutrition. 2021;89:111217. https://doi.org/10.1016/j.nut.2021.111217.

    Article  CAS  Google Scholar 

  161. Neri-Numa IA, Pastore GM. Novel insights into prebiotic properties on human health: a review. Food Res Int. 2020;131:108973. https://doi.org/10.1016/j.foodres.2019.108973.

    Article  Google Scholar 

  162. Barczynska R, Kapusniak J, Litwin M, Slizewska K, Szalecki M. Dextrins from maize starch as substances activating the growth of bacteroidetes and actinobacteria simultaneously inhibiting the growth of firmicutes, responsible for the occurrence of obesity. Plant Foods Hum Nutr. 2016;71(2):190–6. https://doi.org/10.1007/s11130-016-0542-9.

    Article  CAS  Google Scholar 

  163. Kumar SA, Ward LC, Brown L. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Br J Nutr. 2016;116(9):1502–11. https://doi.org/10.1017/s0007114516003627.

    Article  CAS  Google Scholar 

  164. Miyoshi M, Shiroto A, Kadoguchi H, Usami M, Hori Y. Prebiotics improved the defecation status via changes in the microbiota and short-chain fatty acids in hemodialysis patients. Kobe J Med Sci. 2020;66(1):E12-e21.

    CAS  Google Scholar 

  165. Birkeland E, Gharagozlian S, Birkeland KI, Valeur J, Måge I, Rud I, et al. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr. 2020;59(7):3325–38. https://doi.org/10.1007/s00394-020-02282-5.

    Article  CAS  Google Scholar 

  166. Reimer RA, Soto-Vaca A, Nicolucci AC, Mayengbam S, Park H, Madsen KL, et al. Effect of chicory inulin-type fructan-containing snack bars on the human gut microbiota in low dietary fiber consumers in a randomized crossover trial. Am J Clin Nutr. 2020;111(6):1286–96. https://doi.org/10.1093/ajcn/nqaa074.

    Article  Google Scholar 

  167. Kiewiet MBG, Elderman ME, El Aidy S, Burgerhof JGM, Visser H, Vaughan EE, et al. Flexibility of gut microbiota in ageing individuals during dietary fiber long-chain inulin intake. Mol Nutr Food Res. 2021;65(4):e2000390. https://doi.org/10.1002/mnfr.202000390.

    Article  CAS  Google Scholar 

  168. He S, Xiong Q, Tian C, Li L, Zhao J, Lin X, et al. Inulin-type prebiotics reduce serum uric acid levels via gut microbiota modulation: a randomized, controlled crossover trial in peritoneal dialysis patients. Eur J Nutr. 2022;61(2):665–77. https://doi.org/10.1007/s00394-021-02669-y.

    Article  CAS  Google Scholar 

  169. da Silva Borges D, Fernandes R, Thives Mello A, da Silva Fontoura E, Soares Dos Santos AR, Santos de Moraes Trindade EB. Prebiotics may reduce serum concentrations of C-reactive protein and ghrelin in overweight and obese adults: a systematic review and meta-analysis. Nutr Rev. 2020;78(3):235–48. https://doi.org/10.1093/nutrit/nuz045

  170. Li XQ, Zhang XM, Wu X, Lan Y, Xu L, Meng XC, et al. Beneficial effects of lactitol on the composition of gut microbiota in constipated patients. J Dig Dis. 2020;21(8):445–53. https://doi.org/10.1111/1751-2980.12912.

    Article  CAS  Google Scholar 

  171. Armani RG, Carvalho AB, Ramos CI, Hong V, Bortolotto LA, Cassiolato JL, et al. Effect of fructooligosaccharide on endothelial function in CKD patients: a randomized controlled trial. Nephrol Dial Transplant. 2021;37(1):85–91. https://doi.org/10.1093/ndt/gfaa335.

    Article  CAS  Google Scholar 

  172. Igarashi M, Morimoto M, Suto A, Nakatani A, Hayakawa T, Hara K, et al. Synthetic dietary inulin, Fuji FF, delays development of diet-induced obesity by improving gut microbiota profiles and increasing short-chain fatty acid production. PeerJ. 2020;8:e8893. https://doi.org/10.7717/peerj.8893.

    Article  Google Scholar 

  173. Mistry RH, Liu F, Borewicz K, Lohuis MAM, Smidt H, Verkade HJ, et al. Long-term β-galacto-oligosaccharides supplementation decreases the development of obesity and insulin resistance in mice fed a Western-type diet. Mol Nutr Food Res. 2020;64(12):e1900922. https://doi.org/10.1002/mnfr.201900922.

    Article  CAS  Google Scholar 

  174. Ahmadi S, Nagpal R, Wang S, Gagliano J, Kitzman DW, Soleimanian-Zad S, et al. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem. 2019;67:1–13. https://doi.org/10.1016/j.jnutbio.2019.01.011.

    Article  CAS  Google Scholar 

  175. Hann M, Zeng Y, Zong L, Sakurai T, Taniguchi Y, Takagaki R, et al. Anti-inflammatory activity of isomaltodextrin in a C57BL/6NCrl mouse model with lipopolysaccharide-induced low-grade chronic inflammation. Nutrients. 2019;11(11). https://doi.org/10.3390/nu11112791.

  176. Hu F, Niu Y, Xu X, Hu Q, Su Q, Zhang H. Resistant dextrin improves high-fat-high-fructose diet induced insulin resistance. Nutr Metab (Lond). 2020;17:36. https://doi.org/10.1186/s12986-020-00450-2.

    Article  CAS  Google Scholar 

  177. Valcheva R, Hotte N, Gillevet P, Sikaroodi M, Thiessen A, Madsen KL. Soluble dextrin fibers alter the intestinal microbiota and reduce proinflammatory cytokine secretion in male IL-10-deficient mice. J Nutr. 2015;145(9):2060–6. https://doi.org/10.3945/jn.114.207738.

    Article  CAS  Google Scholar 

  178. Guo Y, Yu Y, Li H, Ding X, Li X, Jing X, et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice. Eur J Nutr. 2021;60(4):2217–30. https://doi.org/10.1007/s00394-020-02414-x.

    Article  CAS  Google Scholar 

  179. Bonnema AL, Kolberg LW, Thomas W, Slavin JL. Gastrointestinal tolerance of chicory inulin products. J Am Diet Assoc. 2010;110(6):865–8. https://doi.org/10.1016/j.jada.2010.03.025.

    Article  CAS  Google Scholar 

  180. Johnstone N, Dart S, Knytl P, Nauta A, Hart K, Cohen KK. Nutrient intake and gut microbial genera changes after a 4-week placebo controlled galacto-oligosaccharides intervention in young females. Nutrients. 2021;13(12):4384. https://doi.org/10.3390/nu13124384.

    Article  CAS  Google Scholar 

  181. Wilms E, An R, Smolinska A, Stevens Y, Weseler AR, Elizalde M, et al. Galacto-oligosaccharides supplementation in prefrail older and healthy adults increased faecal bifidobacteria, but did not impact immune function and oxidative stress. Clin Nutr. 2021;40(5):3019–31. https://doi.org/10.1016/j.clnu.2020.12.034.

    Article  CAS  Google Scholar 

  182. Sims IM, Tannock GW. Galacto- and fructo-oligosaccharides utilized for growth by cocultures of bifidobacterial species characteristic of the infant gut. Appl Environ Microbiol. 2020;86(11):e00214-e220. https://doi.org/10.1128/AEM.00214-20.

    Article  CAS  Google Scholar 

  183. Yu R, Yin Y, Cao M, Ye D, Zhang Y, Zhou Q, et al. Fructo-oligosaccharides lower serum lipid levels and suppress high-fat/high-sugar diet-induced inflammation by elevating serum and gut levels of short-chain fatty acids. J Int Med Res. 2020;48(4):300060519896714. https://doi.org/10.1177/0300060519896714

  184. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–35. https://doi.org/10.3390/nu5041417.

    Article  CAS  Google Scholar 

  185. Report FAO/WHO FaAOaWHO: Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001;1–29. https://www.fao.org/3/y6398e/y6398e.pdf . Accessed 27 Aug 2022

  186. Zawistowska-Rojek A, Tyski S. Are probiotic really safe for humans? Pol J Microbiol. 2018;67(3):251–8. https://doi.org/10.21307/pjm-2018-044.

    Article  Google Scholar 

  187. Azad MAK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: an overview. BioMed Res Int. 2018;2018:9478630. https://doi.org/10.1155/2018/9478630.

    Article  CAS  Google Scholar 

  188. Kim SK, Guevarra RB, Kim YT, Kwon J, Kim H, Cho JH, et al. Role of probiotics in human gut microbiome-associated diseases. J Microbiol Biotechnol. 2019;29(9):1335–40. https://doi.org/10.4014/jmb.1906.06064.

    Article  Google Scholar 

  189. Tsao S-P, Nurrahma BA, Kumar R, Wu C-H, Yeh T-H, Chiu C-C, et al. Probiotic enhancement of antioxidant capacity and alterations of gut microbiota composition in 6-hydroxydopamin-induced Parkinson’s disease rats. Antioxidants. 2021;10(11):1823.

    Article  CAS  Google Scholar 

  190. Kim C-S, Cha L, Sim M, Jung S, Chun WY, Baik HW, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci. 2021;76(1):32–40. https://doi.org/10.1093/gerona/glaa090.

    Article  CAS  Google Scholar 

  191. Chen S, Jiang PP, Yu D, Liao GC, Wu SL, Fang AP, et al. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial. Eur J Nutr. 2021;60(2):747–58. https://doi.org/10.1007/s00394-020-02278-1.

    Article  CAS  Google Scholar 

  192. Plummer EL, Danielewski JA, Garland SM, Su J, Jacobs SE, Murray GL. The effect of probiotic supplementation on the gut microbiota of preterm infants. J Med Microbiol. 2021;70(8). https://doi.org/10.1099/jmm.0.001403.

  193. Korpela K, Salonen A, Vepsäläinen O, Suomalainen M, Kolmeder C, Varjosalo M, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6(1):182. https://doi.org/10.1186/s40168-018-0567-4.

    Article  Google Scholar 

  194. Navarro-Tapia E, Sebastiani G, Sailer S, Toledano LA, Serra-Delgado M, García-Algar Ó, et al. Probiotic supplementation during the perinatal and infant period: effects on gut dysbiosis and disease. Nutrients. 2020;12(8):2243. https://doi.org/10.3390/nu12082243.

    Article  CAS  Google Scholar 

  195. Zhao J, Tian F, Yan S, Zhai Q, Zhang H, Chen W. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in d-galactose-induced aging mice. Food Funct. 2018;9(2):917–24. https://doi.org/10.1039/c7fo01574g.

    Article  CAS  Google Scholar 

  196. Sun J, Li H, Jin Y, Yu J, Mao S, Su K-P, et al. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav Immun. 2021;91:703–15.

    Article  CAS  Google Scholar 

  197. Chen D, Yang Z, Chen X, Huang Y, Yin B, Guo F, et al. The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complement Altern Med. 2014;14:386. https://doi.org/10.1186/1472-6882-14-386.

    Article  CAS  Google Scholar 

  198. Visñuk DP, de Giori GS, LeBlanc JG, de LeBlanc AdM. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model. Nutrition. 2020;79:110995

  199. Moludi J, Kafil HS, Qaisar SA, Gholizadeh P, Alizadeh M, Vayghyan HJ. Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients: a double blind placebo controlled randomized clinical trial. Nutr J. 2021;20(1):47. https://doi.org/10.1186/s12937-021-00703-7.

    Article  CAS  Google Scholar 

  200. Rudzki L, Ostrowska L, Pawlak D, Małus A, Pawlak K, Waszkiewicz N, et al. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–22.

    Article  CAS  Google Scholar 

  201. Tripolt NJ, Leber B, Triebl A, Köfeler H, Stadlbauer V, Sourij H. Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: an open-label, randomized study. Atherosclerosis. 2015;242(1):141–4. https://doi.org/10.1016/j.atherosclerosis.2015.05.005.

    Article  CAS  Google Scholar 

  202. Robles-Vera I, de la Visitación N, Toral M, Sánchez M, Romero M, Gómez-Guzmán M, et al. Probiotic Bifidobacterium breve prevents DOCA-salt hypertension. Faseb J. 2020;34(10):13626–40. https://doi.org/10.1096/fj.202001532R.

    Article  CAS  Google Scholar 

  203. Gui Q, Wang A, Zhao X, Huang S, Tan Z, Xiao C, et al. Effects of probiotic supplementation on natural killer cell function in healthy elderly individuals: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2020;74(12):1630–7. https://doi.org/10.1038/s41430-020-0670-z.

    Article  Google Scholar 

  204. Bron PA, Kleerebezem M, Brummer R-J, Cani PD, Mercenier A, MacDonald TT, et al. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117(1):93–107. https://doi.org/10.1017/S0007114516004037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Ağagündüz.

Ethics declarations

Conflict of Interest

None. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ağagündüz, D., Cemali, Ö. & Çelik, E. Interaction Between Natural Products and Gut Microbiota. Curr Pharmacol Rep 9, 7–31 (2023). https://doi.org/10.1007/s40495-022-00309-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00309-5

Keywords

Navigation