Skip to main content

Advertisement

Log in

The Potential Role of Bioactive Plant-Based Polyphenolic Compounds and Their Delivery Systems—as a Promising Opportunity for a New Therapeutic Solution for Acute and Chronic Wound Healing

  • Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research (H Latha, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Plant-based polyphenolic compounds are natural by-products known as plant secondary metabolites, which have significant utilities in the plant host system. Besides, plant polyphenol’s pharmaceutical and medicinal potential positively promote human health. Recent evidence suggested that humans could benefit from plant-based polyphenolic compounds through foodstuff or skin application. However, the therapeutic effects of plant-polyphenolic compounds permit them to act as an effective and alternative agent to treat various diseases and damages related to the skin as they protect and attenuate the progress of many skin disorders, including non-healing cutaneous wounds.

Recent Findings

The mode of polyphenol application is the reason for concern due to decreased stability and performance around the wound area. The use of natural and synthetic polymer-based biomaterials acts as a protection and carrier system for polyphenolic compounds, which improve the stability and effects on the wound area by acting as a promising agent for tissue regeneration. Polyphenols like morin, quercetin, apigenin, curcumin, gallic acid, chrysin, puerarin, and hesperidin are potent anti-oxidants and anti-inflammatory anti-bacterial, and anti-cancer agents. These compounds also have skin protective applications, curing stress, skin aging, age-related diseases, and boosting the innate immune system. Plant-based polyphenolic compounds provide anti-microbial, anti-oxidant, and anti-inflammatory properties to wound dressing, further contributing to vascularization, re-epithelization, collagen synthesis, and wound contraction.

Summary

The present paper reviews the recent information on the potential therapy of normal and diabetic wounds through treatment with phenolic compounds with the combination of polymer-based biomaterial that plays an essential role in the healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014;03(8):2211–30. https://doi.org/10.1002/jps.24068.

    Article  CAS  Google Scholar 

  2. Global Wound Care Market by Product (Dressings (Foam, Film, Hydrocolloid, Collagen, Alginate), Devices (NPWT, Debridement), Grafts, Matrices, Topical Agents, Sutures, Stapler), Wound (Traumatic, Diabetic Ulcers, Surgical, Burn), End-user, and Region - For. Sensors (Peterborough, NH). Published 2020. https://www.marketsandmarkets.com/PressReleases/wound-care.asp. Accessed 21 Oct 2021.

  3. Centers for Disease Control and Prevention. National Diabetes Statistics Report. 2021. Natl Diabetes Stat Rep. Published online 2021:1-12. https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed 3 May 2022.

  4. Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - a literature review. An Bras Dermatol. 2016;91(5):614–20. https://doi.org/10.1590/abd1806-4841.20164741.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):1–36. https://doi.org/10.1126/scitranslmed.3009337.

    Article  CAS  Google Scholar 

  6. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514–25. https://doi.org/10.1038/sj.jid.5700701.

    Article  CAS  PubMed  Google Scholar 

  7. Wernick B, Nahirniak P, Stawicki SP. Impaired wound healing. 2022. http://www.ncbi.nlm.nih.gov/pubmed/29489281.

  8. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610. https://doi.org/10.1007/s12325-017-0478-y.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ou Q, Zhang S, Fu C, et al. More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing. J Nanobiotechnol. 2021;19(1):1–12. https://doi.org/10.1186/s12951-021-00973-7.

    Article  CAS  Google Scholar 

  10. Hano C, Tungmunnithum D. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases. Medicines. 2020;7(5):26. https://doi.org/10.3390/medicines7050026.

    Article  PubMed Central  Google Scholar 

  11. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. 2018;5(3):93. https://doi.org/10.3390/medicines5030093.

    Article  CAS  PubMed Central  Google Scholar 

  12. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and anti-oxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40. https://doi.org/10.1016/j.cbi.2005.12.009.

    Article  CAS  PubMed  Google Scholar 

  13. Pham-Huy LA, Hua He CP-H. Free radicals, anti-oxidants in disease and health Lien. Int J Biomed Sci. 2008;2:89–96. https://doi.org/10.17094/ataunivbd.483253.

    Article  Google Scholar 

  14. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013(4):1–16. https://doi.org/10.1155/2013/162750.

    Article  CAS  Google Scholar 

  15. Compaore M, Bakasso S, Meda R, Nacoulma O. Antioxidant and anti-inflammatory activities of fractions from Bidens engleri O.E. Schulz (Asteraceae) and Boerhavia erecta L. (Nyctaginaceae). Medicines. 2018;5(2):53. https://doi.org/10.3390/medicines5020053.

    Article  CAS  PubMed Central  Google Scholar 

  16. Dzotam JK, Simo IK, Bitchagno G, Celik I, Sandjo LP, Tane P, Kuete V. In vitro anti-bacterial and antibiotic modifying activity of crude extract, fractions and 3’,4’,7-trihydroxyflavone from Myristica fragrans Houtt against MDR Gram-negative enteric bacteria. BMC Complement Altern Med. 2018;18(1):1–9. https://doi.org/10.1186/s12906-018-2084-1.

    Article  CAS  Google Scholar 

  17. Tsai PJ, Huang WC, Hsieh MC, Sung PJ, Kuo YH, Wu WH. Flavones isolated from scutellariae radix suppress propionibacterium acnes-induced cytokine production in vitro and in vivo. Molecules. 2016;21(1):1–11. https://doi.org/10.3390/molecules21010015.

    Article  CAS  Google Scholar 

  18. Jarial R, Thakur S, Sakinah M, Zularisam AW, Sharad A, Kanwar SS, Singh L. Potent anti-cancer, anti-oxidant and anti-bacterial activities of isolated flavonoids from Asplenium nidus. J King Saud Univ Sci. 2018;30(2):185–92. https://doi.org/10.1016/j.jksus.2016.11.006.

    Article  Google Scholar 

  19. Ide H, Lu Y, Noguchi T, et al. Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Cancer Sci. 2018;109(4):1230–8. https://doi.org/10.1111/cas.13517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Danciu C, Vlaia L, Fetea F, et al. Evaluation of phenolic profile, anti-oxidant and anti-cancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells. Biol Res. 2015;48:1–9. https://doi.org/10.1186/0717-6287-48-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Syama HP, Arya AD, Dhanya R, et al. Quantification of phenolics in Syzygium cumini seed and their modulatory role on tertiary butyl-hydrogen peroxide-induced oxidative stress in H9c2 cell lines and key enzymes in cardioprotection. J Food Sci Technol. 2017;54(7):2115–25. https://doi.org/10.1007/s13197-017-2651-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alhaider IA, Mohamed ME, Ahmed KKM, Kumar AHS. Date palm (Phoenix dactylifera) fruits as a potential cardioprotective agent: the role of circulating progenitor cells. Front Pharmacol. 2017;8(SEP):1–11. https://doi.org/10.3389/fphar.2017.00592.

    Article  CAS  Google Scholar 

  23. Moore JO, Wang Y, Stebbins WG, et al. Photoprotective effect of isoflavone genistein on ultraviolet B-induced pyrimidine dimer formation and PCNA expression in human reconstituted skin and its implications in dermatology and prevention of cutaneous carcinogenesis. Carcinogenesis. 2006;27(8):1627–35. https://doi.org/10.1093/carcin/bgi367.

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Gnanaraj C, Arulselvan P, El-Seedi H, Teng H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: based on its activity in the treatment of type 2 diabetes. Trends Food Sci Technol. 2018;2019(85):149–62. https://doi.org/10.1016/j.tifs.2018.11.026.

    Article  CAS  Google Scholar 

  25. Guimarães I, Baptista-Silva S, Pintado M, Oliveira AL. Polyphenols: a promising avenue in therapeutic solutions for wound care. Appl Sci. 2021;11(3):1–20. https://doi.org/10.3390/app11031230.

    Article  CAS  Google Scholar 

  26. Karri VVSR, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93:1519–29. https://doi.org/10.1016/j.ijbiomac.2016.05.038.

    Article  CAS  PubMed  Google Scholar 

  27. Gaspar-Pintiliescu A, Stanciuc A-M, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review. Int J Biol Macromol. 2019;138:854–65. https://doi.org/10.1016/j.ijbiomac.2019.07.155.

    Article  CAS  PubMed  Google Scholar 

  28. Krishnan KA, Thomas S. Recent advances on herb-derived constituents-incorporated wound-dressing materials: a review. Polym Adv Technol. 2019;30(4):823–38. https://doi.org/10.1002/pat.4540.

    Article  CAS  Google Scholar 

  29. Hajialyani M, Tewari D, Sobarzo-Sánchez E, Nabavi SM, Farzaei MH, Abdollahi M. Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. Int J Nanomed. 2018;13:5023–43. https://doi.org/10.2147/IJN.S174072.

    Article  CAS  Google Scholar 

  30. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528–42. https://doi.org/10.1177/147323000903700531.

    Article  CAS  PubMed  Google Scholar 

  31. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. https://doi.org/10.1159/000339613.

    Article  CAS  PubMed  Google Scholar 

  32. Schultz GS, Chin GA, Moldawer L, Diegelmann RF. Principles of wound healing. In: Mechanisms of Vascular Disease. University of Adelaide Press; 2011:423–450. https://doi.org/10.1017/UPO9781922064004.024.

  33. Pascoe R. Equine wound management. Aust Vet J. 1992;69(12):336–336. https://doi.org/10.1111/j.1751-0813.1992.tb09918.x.

    Article  Google Scholar 

  34. Canedo-Dorantes L, Canedo-Ayala M. Skin acute wound healing: a comprehensive review. Int J Inflamm. 2019;2019. https://doi.org/10.1155/2019/3706315.

  35. Lephart ED. Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev. 2016;31:36–54. https://doi.org/10.1016/j.arr.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  36. Uccioli L, Izzo V, Meloni M, Vainieri E, Ruotolo V, Giurato L. Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings. J Wound Care. 2015;24(Sup4b):35–42. https://doi.org/10.12968/jowc.2015.24.Sup4b.35.

    Article  PubMed  Google Scholar 

  37. Lefrancois T, Mehta K, Sullivan V, Lin S, Glazebrook M. Evidence based review of literature on detriments to healing of diabetic foot ulcers. Foot Ankle Surg. 2017;23(4):215–24. https://doi.org/10.1016/j.fas.2016.04.002.

    Article  PubMed  Google Scholar 

  38. Saghazadeh S, Rinoldi C, Schot M, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127(1):138–66. https://doi.org/10.1016/j.addr.2018.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Piraino F, Selimović Š. A current view of functional biomaterials for wound care, molecular and cellular therapies. Biomed Res Int. 2015;2015. https://doi.org/10.1155/2015/403801.

  40. Liu J, Zheng H, Dai X, Sun S, Machens HG, Schilling AF. Biomaterials for promoting wound healing in diabetes. J Tissue Sci Eng. 2017;08(01):8–11. https://doi.org/10.4172/2157-7552.1000193.

    Article  CAS  Google Scholar 

  41. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12(8):1–30. https://doi.org/10.3390/pharmaceutics12080735.

    Article  CAS  Google Scholar 

  42. Negut I, Dorcioman G, Grumezescu V. Scaffolds for wound healing applications. Polymers (Basel). 2020;12(9):2010. https://doi.org/10.3390/polym12092010.

    Article  CAS  Google Scholar 

  43. Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23(9):1–23. https://doi.org/10.3390/molecules23092392.

    Article  CAS  Google Scholar 

  44. Ying H, Zhou J, Wang M, et al. Materials Science & Engineering C In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C. 2018;2019(101):487–98. https://doi.org/10.1016/j.msec.2019.03.093.

    Article  CAS  Google Scholar 

  45. Yuan TT, DiGeorge Foushee AM, Johnson MC, Jockheck-Clark AR, Stahl JM. Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications. Nanoscale Res Lett. 2018;13(1):88. https://doi.org/10.1186/s11671-018-2491-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. You C, Li Q, Wang X, et al. Silver nanoparticle loaded collagen / chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 2017;(March):1–11. https://doi.org/10.1038/s41598-017-10481-0.

  47. Kaparekar PS, Poddar N, Anandasadagopan SK. Fabrication and characterization of Chrysin – a plant polyphenol loaded alginate -chitosan composite for wound healing application. Colloids Surf B Biointerfaces. 2021;206:111922. https://doi.org/10.1016/j.colsurfb.2021.111922.

    Article  CAS  PubMed  Google Scholar 

  48. Mohanty C, Das M, Sahoo SK. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol Pharm. 2012;9(10):2801–11. https://doi.org/10.1021/mp300075u.

    Article  CAS  PubMed  Google Scholar 

  49. Chakraborty S, Ponrasu T, Chandel S, Dixit M, Muthuvijayan V. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. R Soc Open Sci. 2018;5(5):172017. https://doi.org/10.1098/rsos.172017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaparekar PS, Pathmanapan S, Anandasadagopan SK. Polymeric scaffold of Gallic acid loaded chitosan nanoparticles infused with collagen-fibrin for wound dressing application. Int J Biol Macromol. 2020;165:930–47. https://doi.org/10.1016/j.ijbiomac.2020.09.212.

    Article  CAS  PubMed  Google Scholar 

  51. Thangavel P, Ramachandran B, Kannan R, Muthuvijayan V. Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications. J Biomed Mater Res B Appl Biomater. 2017;105(6):1401–8. https://doi.org/10.1002/jbm.b.33675.

    Article  CAS  PubMed  Google Scholar 

  52. Ponrasu T, Veerasubramanian PK, Kannan R, Gopika S, Suguna L, Muthuvijayan V. Morin incorporated polysaccharide-protein (psyllium-keratin) hydrogel scaffolds accelerate diabetic wound healing in Wistar rats. RSC Adv. 2018;8(5):2305–14. https://doi.org/10.1039/c7ra10334d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25(11). https://doi.org/10.3390/molecules25112699.

  54. Kumar U. Dressing materials. Bedside Clin Orthop (Ward Round Tables). Published online 2017:17–17. https://doi.org/10.5005/jp/books/13025_3.

  55. Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–33. https://doi.org/10.1016/j.jare.2017.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial contribution in chronicity of wounds. Microb Ecol. 2017;73(3):710–21. https://doi.org/10.1007/s00248-016-0867-9.

    Article  PubMed  Google Scholar 

  57. Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship. J Membr Sci. 2015;490:139–51. https://doi.org/10.1016/j.memsci.2015.04.064.

    Article  CAS  Google Scholar 

  58. Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: a review. Eur Polym J. 2019;117:304–36. https://doi.org/10.1016/j.eurpolymj.2019.05.020.

    Article  CAS  Google Scholar 

  59. Liu Y, Zhou S, Gao Y, Zhai Y. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J Pharm Sci. 2019;14(2):130–43. https://doi.org/10.1016/j.ajps.2018.04.004.

    Article  PubMed  Google Scholar 

  60. Aderibigbe BA, Buyana B. Alginate in wound dressings. Pharmaceutics. 2018;10(2). https://doi.org/10.3390/pharmaceutics10020042.

  61. Schoukens G. Bioactive dressings to promote wound healing. Adv Text Wound Care A Vol Woodhead Publ Ser Text. Published online 2009:114–152. doi:https://doi.org/10.1533/9781845696306.1.114.

  62. Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci. 2016;17(2):1–41. https://doi.org/10.3390/ijms17020160.

    Article  CAS  Google Scholar 

  63. Shedoeva A, Leavesley D, Upton ZFC. Wound healing and the use of medicinal plants. Evid Based Complement Alternat Med. 2019;2019:1–30. https://doi.org/10.1155/2019/2684108.

    Article  Google Scholar 

  64. Liakos I, Rizzello L, Hajiali H, et al. Fibrous wound dressings encapsulating essential oils as natural anti-microbial agents. J Mater Chem B. 2015;3(8):1583–9. https://doi.org/10.1039/c4tb01974a.

    Article  CAS  PubMed  Google Scholar 

  65. Ghuman S, Ncube B, Finnie JF, et al. Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. S Afr J Bot. 2019;126(August):232–40. https://doi.org/10.1016/j.sajb.2019.07.013.

    Article  CAS  Google Scholar 

  66. Yuting C, Rongliang Z, Zhngjian J, Yong J. Flavonoids as superoxide scavengers and anti-oxidants. Free Radic Biol Med. 1990;9:19–21.

    Article  Google Scholar 

  67. Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem. 2001;49(6):2774–9. https://doi.org/10.1021/jf001413m.

    Article  CAS  PubMed  Google Scholar 

  68. Kapoor R, Kakkar P. Protective role of Morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes. PLoS One. 2012;7(8). https://doi.org/10.1371/journal.pone.0041663.

  69. Cazarolli L, Zanatta L, Alberton E, et al. Flavonoids: prospective drug candidates. Mini-Rev Med Chem. 2008;8(13):1429–40. https://doi.org/10.2174/138955708786369564.

    Article  CAS  PubMed  Google Scholar 

  70. Noor H, Cao P, Raleigh DP. Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. Protein Sci. 2012;21(3):373–82. https://doi.org/10.1002/pro.2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Subash S, Subramanian P. Morin a flavonoid exerts anti-oxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Mol Cell Biochem. 2009;327(1–2):153–61. https://doi.org/10.1007/s11010-009-0053-1.

    Article  CAS  PubMed  Google Scholar 

  72. Dhanasekar C, Kalaiselvan S, Rasool M. Morin, a bioflavonoid suppresses monosodium urate crystal-induced inflammatory immune response in RAW 264.7 macrophages through the inhibition of inflammatory mediators, intracellular ROS levels and NF-κB activation. PLoS One. 2015;10(12). https://doi.org/10.1371/journal.pone.0145093.

  73. Abuohashish HM, Al-Rejaie SS, Al-Hosaini KA, Parmar MY, Ahmed MM. Alleviating effects of Morin against experimentally-induced diabetic osteopenia. Diabetol Metab Syndr. 2013;5(1):1–8. https://doi.org/10.1186/1758-5996-5-5.

    Article  CAS  Google Scholar 

  74. Gomathi K, Gopinath D, Ahmed MR, Jayakumar R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials. 2003;24(16):2767–72. https://doi.org/10.1016/S0142-9612(03)00059-0.

    Article  CAS  PubMed  Google Scholar 

  75. Veerapandian M, Seo YT, Yun K, Lee MH. Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of Quercetin. Biosens Bioelectron. 2014;58:200–4. https://doi.org/10.1016/j.bios.2014.02.062.

    Article  CAS  PubMed  Google Scholar 

  76. Kojarunchitt T, Baldursdottir S, Da DY, Boyd BJ, Rades T, Hook S. Modified thermoresponsive poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems. Eur J Pharm Biopharm. 2015;89:74–81. https://doi.org/10.1016/j.ejpb.2014.11.026.

    Article  CAS  PubMed  Google Scholar 

  77. Periyathambi P, Vedakumari WS, Bojja S, Kumar SB, Sastry TP. Green biosynthesis and characterization of fibrin functionalized iron oxide nanoparticles with MRI sensitivity and increased cellular internalization. Mater Chem Phys. 2014;148(3):1212–20. https://doi.org/10.1016/j.matchemphys.2014.09.050.

    Article  CAS  Google Scholar 

  78. Vedakumari WS, Ayaz N, Karthick AS, Senthil R, Sastry TP. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials — fabrication, characterization and in vivo analysis. Eur J Pharm Sci. 2017;97:106–12. https://doi.org/10.1016/j.ejps.2016.11.012.

    Article  CAS  PubMed  Google Scholar 

  79. Kant V, Jangir BL, Kumar V, Nigam A, Sharma V. Quercetin accelerated cutaneous wound healing in rats by modulation of different cytokines and growth factors. Growth Factors. 2020;38(2):105–19. https://doi.org/10.1080/08977194.2020.1822830.

    Article  CAS  PubMed  Google Scholar 

  80. Yin G, Wang Z, Wang Z, Wang X. Topical application of quercetin improves wound healing in pressure ulcer lesions. Exp Dermatol. 2018;27(7):779–86. https://doi.org/10.1111/exd.13679.

    Article  CAS  PubMed  Google Scholar 

  81. Gopalakrishnan A, Ram M, Kumawat S, Tandan SK, Kumar D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J Exp Biol. 2016;54(3):187–95.

    CAS  PubMed  Google Scholar 

  82. Lepley DM, Li B, Birt DF, Pelling JC. The chemo-preventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis. 1996;17(11):2367–75. https://doi.org/10.1093/carcin/17.11.2367.

    Article  CAS  PubMed  Google Scholar 

  83. Lopez-Jornet P, Camacho-Alonso F, Gómez-Garcia F, et al. Effects of potassium apigenin and verbena extract on the wound healing process of SKH-1 mouse skin. Int Wound J. 2014;11(5):489–95. https://doi.org/10.1111/j.1742-481X.2012.01114.x.

    Article  PubMed  Google Scholar 

  84. Panda S, Kar A. Apigenin (4‘,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J Pharm Pharmacol. 2010;59(11):1543–8. https://doi.org/10.1211/jpp.59.11.0012.

    Article  CAS  Google Scholar 

  85. Hossain CM, Ghosh MK, Satapathy BS, Dey NS, Mukherjee B. Apigenin causes biochemical modulation, GLUT4 and CD38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes. Am J Pharmacol Toxicol. 2014;9(1):39–52. https://doi.org/10.3844/ajptsp.2014.39.52.

    Article  CAS  Google Scholar 

  86. Shukla R, Kashaw SK, Jain AP, Lodhi S. Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int J Biol Macromol. 2016;91:1110–9. https://doi.org/10.1016/j.ijbiomac.2016.06.075.

    Article  CAS  PubMed  Google Scholar 

  87. Byun S, Park J, Lee E, et al. Src kinase is a direct target of apigenin against UVB-induced skin inflammation. Carcinogenesis. 2013;34(2):397–405. https://doi.org/10.1093/carcin/bgs358.

    Article  CAS  PubMed  Google Scholar 

  88. Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol. 2014;20(2):322–30. https://doi.org/10.1016/j.intimp.2014.03.009.

    Article  CAS  PubMed  Google Scholar 

  89. Gowthamarajan K. Multiple biological actions of curcumin in the management of diabetic foot ulcer complications: a systematic review. Trop Med Surg. 2015;03(01):1–6. https://doi.org/10.4172/2329-9088.1000179.

    Article  Google Scholar 

  90. Liu J, Chen Z, Wang J, et al. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl Mater Interfaces. 2018;10(19):16315–26. https://doi.org/10.1021/acsami.8b03868.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao Y, Dai C, Wang Z, et al. A novel curcumin-loaded composite dressing facilitates wound healing due to its natural anti-oxidant effect. Drug Des Devel Ther. 2019;13:3269–80. https://doi.org/10.2147/DDDT.S219224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Owumi SE, Nwozo SO, Effiong ME, Najophe ES. Gallic acid and omega-3 fatty acids decrease inflammatory and oxidative stress in manganese-treated rats. Exp Biol Med. 2020;245(9):835–44. https://doi.org/10.1177/1535370220917643.

    Article  CAS  Google Scholar 

  93. Locatelli C, Filippin-Monteiro FB, Centa A C-PT. Antioxidant, antitumoral and anti-inflammatory activities of gallic acid. 2013;1(April):1–16. https://www.researchgate.net/profile/Tania-Creczynski-Pasa-2/publication/236262423_Antioxidant_Antitumoral_and_Anti-Inflammatory_Activities_of_Gallic_Acid/links/5daf4ca692851c577eb99eeb. Accessed 7 July 2020.

  94. Yang DJ, Moh SH, Son DH, et al. Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules. 2016;21(7):1–15. https://doi.org/10.3390/molecules21070899.

    Article  CAS  Google Scholar 

  95. Raghu Babu Ch, Sowjanya N, DDS. Production of gallic acid-a short review. Ijrsm. 2016;4(4):126–132. http://ijsrm.humanjournals.com/wp-content/uploads/2016/11/11.Ch_.-Raghu-Babu.-N.-Sowjanya-Dr.-D.-Sarvamangala.pdf.

  96. Chatterjee A, Chatterjee S, Biswas A, Bhattacharya S, Chattopadhyay S, Bandyopadhyay SK. Gallic acid enriched fraction of Phyllanthus emblica potentiates indomethacin-induced gastric ulcer healing via e-nos-dependent pathway. Evid Based Complement Alternat Med. 2012;2012. https://doi.org/10.1155/2012/487380.

  97. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med. 2017;17(1):1–10. https://doi.org/10.1186/s12906-017-1555-0.

    Article  CAS  Google Scholar 

  98. Deldar Y, Pilehvar-Soltanahmadi Y, Dadashpour M, Montazer Saheb S, Rahmati-Yamchi M, Zarghami N. An in vitro examination of the anti-oxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif Cells Nanomed Biotechnol. 2018;46(4):706–16. https://doi.org/10.1080/21691401.2017.1337022.

    Article  CAS  PubMed  Google Scholar 

  99. George MY, Esmat A, Tadros MG, El-Demerdash E. In vivo cellular and molecular gastroprotective mechanisms of chrysin; emphasis on oxidative stress, inflammation and angiogenesis. Eur J Pharmacol. 2018;818:486–98. https://doi.org/10.1016/j.ejphar.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  100. Orlowski P, Zmigrodzka M, Tomaszewska E, et al. Polyphenol-conjugated bimetallic au@agnps for improved wound healing. Int J Nanomed. 2020;15:4969–90. https://doi.org/10.2147/IJN.S252027.

    Article  CAS  Google Scholar 

  101. Kakadiya J, Shah N. Effect of hesperidin on renal complication in diabetes – an experimentally study in rats. J Curr Pharm Res. 2010;3(1):35–40.

    Google Scholar 

  102. Li W, Kandhare AD, Mukherjee AA, Bodhankar SL. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: role of TGF-B/SMADS and ANG-1/TIE-2 signaling pathways. EXCLI J. 2018;17(Dm):399–419. https://doi.org/10.17179/excli2018-1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu H, Qu X, Kim E, et al. Bio-inspired redox-cycling anti-microbial film for sustained generation of reactive oxygen species. Biomaterials. 2018;162:109–22. https://doi.org/10.1016/j.biomaterials.2017.12.027.

    Article  CAS  PubMed  Google Scholar 

  104. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332–6. https://doi.org/10.1159/000491755.

    Article  CAS  PubMed  Google Scholar 

  105. Cheng YH, Lin FH, Wang CY, et al. Recovery of oxidative stress-induced damage in Cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel. Biomaterials. 2016;103:207–18. https://doi.org/10.1016/j.biomaterials.2016.06.060.

    Article  CAS  PubMed  Google Scholar 

  106. Wu H, Zhao G, Jiang K, et al. Puerarin exerts an anti-inflammatory effect by inhibiting NF-kB and MAPK activation in Staphylococcus aureus-induced mastitis. Phyther Res. 2016;(1):1658–1664. https://doi.org/10.1002/ptr.5666.

  107. Kim KH, Jung JH, Chung WS, Lee CH, Jang HJ. Ferulic acid induces keratin 6α via inhibition of nuclear β‐catenin accumulation and activation of Nrf2 in wound‐induced inflammation. Biomedicines. 2021;9(5). https://doi.org/10.3390/biomedicines9050459.

  108. Patel K, Singh GK, Patel DK. A Review on Pharmacological and analytical aspects of naringenin. Chin J Integr Med. 2018;24(7):551–60. https://doi.org/10.1007/s11655-014-1960-x.

    Article  CAS  PubMed  Google Scholar 

  109. Salehi M, Ehterami A, Farzamfar S, Vaez A, Ebrahimi-Barough S. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model. Drug Deliv Transl Res. 2021;11(1):142–53. https://doi.org/10.1007/s13346-020-00731-6.

    Article  CAS  PubMed  Google Scholar 

  110. Kandhare AD, Alam J, Patil MVK, Sinha A, Bodhankar SL. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharm Biol. 2016;54(3):419–32. https://doi.org/10.3109/13880209.2015.1038755.

    Article  CAS  PubMed  Google Scholar 

  111. Al-Roujayee AS. Naringenin improves the healing process of thermally-induced skin damage in rats. J Int Med Res. 2017;45(2):570–82. https://doi.org/10.1177/0300060517692483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bagher Z, Ehterami A, Safdel MH, et al. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol. Published online 2019:101379. https://doi.org/10.1016/j.jddst.2019.101379.

  113. Jangde R, Srivastava S, Singh MR, Singh D. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol. 2018;115:1211–7. https://doi.org/10.1016/j.ijbiomac.2018.05.010.

    Article  CAS  PubMed  Google Scholar 

  114. Tran NQ, Joung YK, Lih E, Park KD. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules. 2011;12(8):2872–80. https://doi.org/10.1021/bm200326g.

    Article  CAS  PubMed  Google Scholar 

  115. Bairagi U, Mittal P, Singh J, Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm. 2018;44(11):1783–96. https://doi.org/10.1080/03639045.2018.1496448.

    Article  CAS  PubMed  Google Scholar 

  116. Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A. Antibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces. 2016;8(42):28511–21. https://doi.org/10.1021/acsami.6b10491.

    Article  CAS  PubMed  Google Scholar 

  117. Ma H, Zhou Q, Chang J, Wu C. Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing. ACS Nano. 2019;13(4):4302–11. https://doi.org/10.1021/acsnano.8b09496.

    Article  CAS  PubMed  Google Scholar 

  118. Jiji S, Udhayakumar S, Rose C, Muralidharan C, Kadirvelu K. Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int J Biol Macromol. 2019;122:452–60. https://doi.org/10.1016/j.ijbiomac.2018.10.192.

    Article  CAS  PubMed  Google Scholar 

  119. Koosehgol S, Ebrahimian-Hosseinabadi M, Alizadeh M, Zamanian A. Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing. Mater Sci Eng C. 2017;79:66–75. https://doi.org/10.1016/j.msec.2017.05.001.

    Article  CAS  Google Scholar 

  120. Kavoosi G, Mohammad S, Dadfar M, Purfard AM. Antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. 2013;78(2). https://doi.org/10.1111/1750-3841.12015.

  121. Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C. Resveratrol promotes diabetic wound healing via SIRT1- FOXO1-c-Myc Signaling. 2019;10:1–18. https://doi.org/10.3389/fphar.2019.00421.

  122. Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative anti-microbial and wound healing agent. Nanomed Nanotechnol Biol Med. 2015;11(1):195–206. https://doi.org/10.1016/j.nano.2014.09.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the Director, CSIR-CLRI, for permitting and providing support to publish the review article (CSIR-CLRI communication No. 1646).

Funding

PSK would like to acknowledge CSIR-University Grant Commission, Government of India, by providing fellowship in the form of CSIR- UGC- NET- JRF (Ref. No.21/06/2015(i)EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Anandasadagopan.

Ethics declarations

Conflict of Interest

The authors revealed that there is no conflict of interest regarding the publication of this paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaparekar, P.S., Anandasadagopan, S.K. The Potential Role of Bioactive Plant-Based Polyphenolic Compounds and Their Delivery Systems—as a Promising Opportunity for a New Therapeutic Solution for Acute and Chronic Wound Healing. Curr Pharmacol Rep 8, 321–338 (2022). https://doi.org/10.1007/s40495-022-00296-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00296-7

Keywords

Navigation