Skip to main content

Advertisement

Log in

Neuropsychological Constructs in Gaming Disorders: a Systematic Review

  • Addictions (M Potenza and E DeVito, Section Editors)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Background/Purpose

With the increasing popularity of video games, a subset of players develop addiction-like behaviours, the frequency of severity thereof warranting the DSM-5 to include Internet gaming disorder (IGD) as a condition for further study. This systematic review examines neurocognitive features of individuals meeting IGD criteria while drawing parallels to other addictive behaviours, such as gambling disorder.

Methods

This paper examines original studies comparing gaming disorder or gaming groups against control groups on neurocognitive paradigms. Articles were retrieved from PubMed and PsycInfo online databases, in accordance with PRISMA standards.

Results

The literature search showed a high number of studies examining inhibitory control in IGD populations. Participants with IGD demonstrated impaired inhibitory control and impulsivity, indicated by more errors of while performing neurocognitive tasks, particularly when distractors were salient game-related cues. IGD was also associated with higher reward sensitivity and lower loss sensitivity, leading to overall riskier decision-making.

Discussion

Changes in neurocognitive features in IGD are similar to substance use disorders and gambling disorder, suggesting the pathology may develop by similar mechanisms. Counterintuitively, the improved performance in non-IGD gaming populations in some studies suggests that video game experience itself, distinct from addiction towards games, may improve performance in error processing and reaction times. Future research incorporating IGD comorbidities, longitudinal designs to establish causality, and standard diagnostic cutoffs are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Games: Games 360 US report - Google Scholar [Internet]. [cited 2020 Jul 8]. Available from: https://scholar.google.com/scholar_lookup?title=Games+360+U.S.+Report.&publication_year=2017&

  2. Ross DR, Finestone DH, Lavin GK. Space invaders obsession. JAMA. 1982;248:1177.

    Article  CAS  PubMed  Google Scholar 

  3. Fisher S. Identifying video game addiction in children and adolescents. Addict Behav. 1994;19:545–53.

    Article  CAS  PubMed  Google Scholar 

  4. Keepers GA. Pathological preoccupation with video games. J Am Acad Child Adolesc Psychiatry. Elsevier. 1990;29:49–50.

    Article  CAS  Google Scholar 

  5. Petry NM, Rehbein F, Ko C-H, O’Brien CP. Internet gaming disorder in the DSM-5. Curr Psychiatry Rep. 2015;17:72.

    Article  PubMed  Google Scholar 

  6. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  7. ICD-11 - Mortality and morbidity statistics [Internet]. [cited 2020 Jul 8]. Available from: https://icd.who.int/browse11/l-m/en

  8. Aarseth E, Bean AM, Boonen H, Colder Carras M, Coulson M, Das D, et al. Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal. J Behav Addict. 2017;6:267–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bean AM, Nielsen RKL, van Rooij AJ, Ferguson CJ. Video game addiction: the push to pathologize video games. Prof Psychol Res Pract. US: American Psychological Association. 2017;48:378–89.

    Article  Google Scholar 

  10. Griffiths MD, Kuss DJ, Lopez-Fernandez O, Pontes HM. Problematic gaming exists and is an example of disordered gaming: commentary on: scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal (Aarseth et al.). J Behav Addict. Akadémiai Kiadó. 2017;6:296–301.

    Google Scholar 

  11. Király O, Demetrovics Z. Inclusion of gaming disorder in ICD has more advantages than disadvantages. J Behav Addict. 2017;6:280–4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kuss DJ, Griffiths MD, Pontes HM. Chaos and confusion in DSM-5 diagnosis of Internet gaming disorder: issues, concerns, and recommendations for clarity in the field. J Behav Addict. 2017;6:103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Müller KW, Wölfling K. Both sides of the story: addiction is not a pastime activity. J Behav Addict. 2017;6:118–20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Quandt T. Stepping back to advance: why IGD needs an intensified debate instead of a consensus. J Behav Addict. 2017;6:121–3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. van den Brink W. ICD-11 Gaming disorder: needed and just in time or dangerous and much too early? J Behav Addict. 2017;6:290–2.

    PubMed  PubMed Central  Google Scholar 

  16. Feng W, Ramo DE, Chan SR, Bourgeois JA. Internet gaming disorder: trends in prevalence 1998–2016. Addict Behav. 2017;75:17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Starcevic V, Berle D, Porter G, Fenech P. Problem video game use and dimensions of psychopathology. Int J Ment Health Addict. 2011;9:248–56.

    Article  Google Scholar 

  18. Wan C-S, Chiou W-B. The motivations of adolescents who are addicted to online games: a cognitive perspective. Adolescence. 2007;42:179–97.

    PubMed  Google Scholar 

  19. Toker S, Baturay MH. Antecedents and consequences of game addiction. Comput Hum Behav. 2016;55:668–79.

    Article  Google Scholar 

  20. Snodgrass JG, Bagwell A, Patry JM, Dengah HJF, Smarr-Foster C, Van Oostenburg M, et al. The partial truths of compensatory and poor-get-poorer internet use theories: More highly involved videogame players experience greater psychosocial benefits. Comput Hum Behav. 2018;78:10–25.

    Article  Google Scholar 

  21. Lemmens JS, Valkenburg PM, Peter J. Psychosocial causes and consequences of pathological gaming. Comput Hum Behav. 2011;27:144–52.

    Article  Google Scholar 

  22. Estévez A, Jáuregui P, Sánchez-Marcos I, López-González H, Griffiths MD. Attachment and emotion regulation in substance addictions and behavioral addictions. J Behav Addict. 2017;6:534–44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim H, Ha J, Chang W-D, Park W, Kim L, Im C-H. Detection of craving for gaming in adolescents with internet gaming disorder using multimodal biosignals. Sensors. 2018;18.

  24. Du X, Yang Y, Gao P, Qi X, Du G, Zhang Y, et al. Compensatory increase of functional connectivity density in adolescents with internet gaming disorder. Brain Imaging Behav. 2017;11:1901–9.

    Article  PubMed  Google Scholar 

  25. Han DH, Lyoo IK, Renshaw PF. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J Psychiatr Res. 2012;46:507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhai J, Luo L, Qiu L, Kang Y, Liu B, Yu D, et al. The topological organization of white matter network in internet gaming disorder individuals. Brain Imaging Behav. 2017;11:1769–78.

    Article  PubMed  Google Scholar 

  27. Ames SL, Wong SW, Bechara A, Cappelli C, Dust M, Grenard JL, et al. Neural correlates of a Go/NoGo task with alcohol stimuli in light and heavy young drinkers. Behav Brain Res. 2014;274:382–9.

    Article  PubMed  Google Scholar 

  28. Zhao X, Qian W, Fu L, Maes JHR. Deficits in go/no-go task performance in male undergraduate high-risk alcohol users are driven by speeded responding to go stimuli. Am J Drug Alcohol Abuse. 2017;43:656–63.

    Article  PubMed  Google Scholar 

  29. Kaufman JN, Ross TJ, Stein EA, Garavan H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci Off J Soc Neurosci. 2003;23:7839–43.

    Article  CAS  Google Scholar 

  30. Hester R, Nestor L, Garavan H. Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2009;34:2450–8.

    Article  Google Scholar 

  31. Krikorian R, Zimmerman ME, Fleck DE. Inhibitory control in obsessive-compulsive disorder. Brain Cogn. 2004;54:257–9.

    Article  PubMed  Google Scholar 

  32. Penadés R, Catalán R, Rubia K, Andrés S, Salamero M, Gastó C. Impaired response inhibition in obsessive compulsive disorder. Eur Psychiatry J Assoc Eur Psychiatr. 2007;22:404–10.

    Article  Google Scholar 

  33. Chamberlain SR, Fineberg NA, Blackwell AD, Clark L, Robbins TW, Sahakian BJ. A neuropsychological comparison of obsessive-compulsive disorder and trichotillomania. Neuropsychologia. 2007;45:654–62.

    Article  PubMed  Google Scholar 

  34. van Velzen LS, Vriend C, de Wit SJ, van den Heuvel OA. Response inhibition and interference control in obsessive-compulsive spectrum disorders. Front Hum Neurosci. 2014;8:419.

    PubMed  PubMed Central  Google Scholar 

  35. Winstanley CA, Eagle DM, Robbins TW. Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev. 2006;26:379–95.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bezdjian S, Baker LA, Lozano DI, Raine A. Assessing inattention and impulsivity in children during the Go/NoGo task. Br J Dev Psychol. 2009;27:365–83.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Senderecka M, Grabowska A, Szewczyk J, Gerc K, Chmylak R. Response inhibition of children with ADHD in the stop-signal task: an event-related potential study. Int J Psychophysiol Off J Int Organ Psychophysiol. 2012;85:93–105.

    Google Scholar 

  38. Brand M, Kalbe E, Labudda K, Fujiwara E, Kessler J, Markowitsch HJ. Decision-making impairments in patients with pathological gambling. Psychiatry Res. 2005;133:91–9.

    Article  PubMed  Google Scholar 

  39. Forbush KT, Shaw M, Graeber MA, Hovick L, Meyer VJ, Moser DJ, et al. Neuropsychological characteristics and personality traits in pathological gambling. CNS Spectr. 2008;13:306–15.

    Article  PubMed  Google Scholar 

  40. de Ruiter MB, Oosterlaan J, Veltman DJ, van den Brink W, Goudriaan AE. Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug Alcohol Depend. 2012;121:81–9.

    Article  PubMed  Google Scholar 

  41. Choi J-S, Shin Y-C, Jung WH, Jang JH, Kang D-H, Choi C-H, et al. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PloS One. 2012;7:e45938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Billieux J, Lagrange G, Van der Linden M, Lançon C, Adida M, Jeanningros R. Investigation of impulsivity in a sample of treatment-seeking pathological gamblers: a multidimensional perspective. Psychiatry Res. 2012;198:291–6.

    Article  PubMed  Google Scholar 

  43. Decker SA, Gay JN. Cognitive-bias toward gaming-related words and disinhibition in World of Warcraft gamers. Comput Hum Behav. 2011;27:798–810.

    Article  Google Scholar 

  44. Littel M, van den Berg I, Luijten M, van Rooij AJ, Keemink L, Franken IHA. Error processing and response inhibition in excessive computer game players: an event-related potential study. Addict Biol. 2012;17:934–47.

    Article  PubMed  Google Scholar 

  45. Zhou Z, Yuan G, Yao J. Cognitive biases toward Internet game-related pictures and executive deficits in individuals with an Internet game addiction. PloS One. 2012;7:e48961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ko C-H, Hsieh T-J, Chen C-Y, Yen C-F, Chen C-S, Yen J-Y, et al. Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: a functional magnetic imaging study. Eur Arch Psychiatry Clin Neurosci. 2014;264:661–72.

    Article  PubMed  Google Scholar 

  47. Liu G-C, Yen J-Y, Chen C-Y, Yen C-F, Chen C-S, Lin W-C, et al. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. Kaohsiung J Med Sci. 2014;30:43–51.

    Article  PubMed  Google Scholar 

  48. Chen C-Y, Huang M-F, Yen J-Y, Chen C-S, Liu G-C, Yen C-F, et al. Brain correlates of response inhibition in Internet gaming disorder. Psychiatry Clin Neurosci. 2015;69:201–9.

    Article  PubMed  Google Scholar 

  49. •• Luijten M, Meerkerk G-J, Franken IHA, van de Wetering BJM, Schoenmakers TM. An fMRI study of cognitive control in problem gamers. Psychiatry Res. 2015;231:262–8 Demonstrates heightened impulsivity and reduced inhibitory control related to diminished inferior frontal gyrus and inferior parietal lobe recruitment in problem gamers.

    Article  PubMed  Google Scholar 

  50. Yao Y-W, Wang L-J, Yip SW, Chen P-R, Li S, Xu J, et al. Impaired decision-making under risk is associated with gaming-specific inhibition deficits among college students with Internet gaming disorder. Psychiatry Res. 2015;229:302–9.

    Article  PubMed  Google Scholar 

  51. Colzato LS, van den Wildenberg WPM, Zmigrod S, Hommel B. Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychol Res. 2013;77:234–9.

    Article  PubMed  Google Scholar 

  52. • Choi S-W, Kim HS, Kim G-Y, Jeon Y, Park SM, Lee J-Y, et al. Similarities and differences among Internet gaming disorder, gambling disorder and alcohol use disorder: a focus on impulsivity and compulsivity. J Behav Addict. 2014;3:246–53 This is one of the few studies to compare and contrast individuals with gaming, gambling and alcohol use disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Deleuze J, Christiaens M, Nuyens F, Billieux J. Shoot at first sight! First person shooter players display reduced reaction time and compromised inhibitory control in comparison to other video game players. Comput Hum Behav. 2017;72:570–6.

    Article  Google Scholar 

  54. Kim Y-J, Lim JA, Lee JY, Oh S, Kim SN, Kim DJ, et al. Impulsivity and compulsivity in Internet gaming disorder: a comparison with obsessive-compulsive disorder and alcohol use disorder. J Behav Addict. 2017;6:545–53.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xing L, Yuan K, Bi Y, Yin J, Cai C, Feng D, et al. Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Res. 2014;1586:109–17.

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Jin C, Yuan K, Shakir TM, Mao C, Niu X, et al. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder. Front Behav Neurosci. 2015;9:64.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ray Li C, Huang C, Constable RT, Sinha R. Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. J Neurosci. 2006;26:186–92.

    Article  PubMed Central  CAS  Google Scholar 

  58. Khng KH, Lee K. The relationship between Stroop and stop-signal measures of inhibition in adolescents: influences from variations in context and measure estimation. PloS One. 2014;9:e101356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yuan K, Qin W, Yu D, Bi Y, Xing L, Jin C, et al. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Struct Funct. 2016;221:1427–42.

    Article  PubMed  Google Scholar 

  60. Castel AD, Pratt J, Drummond E. The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychol (Amst). 2005;119:217–30.

    Article  PubMed  Google Scholar 

  61. Steenbergen L, Sellaro R, Stock A-K, Beste C, Colzato LS. Action video gaming and cognitive control: playing first person shooter games is associated with improved action cascading but not inhibition. PloS One. 2015;10:e0144364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yao Y-W, Chen P-R, Li S, Wang L-J, Zhang J-T, Yip SW, et al. Decision-making for risky gains and losses among college students with Internet gaming disorder. PloS One. 2015;10:e0116471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hutchinson CV, Barrett DJK, Nitka A, Raynes K. Action video game training reduces the Simon Effect. Psychon Bull Rev. 2016;23:587–92.

    Article  PubMed  Google Scholar 

  64. Ryu H, Lee J-Y, Choi A, Park S, Kim D-J, Choi J-S. The relationship between impulsivity and internet gaming disorder in young adults: mediating effects of interpersonal relationships and depression. Int J Environ Res Public Health. 2018;15.

  65. Lawrence V, Houghton S, Tannock R, Douglas G, Durkin K, Whiting K. ADHD outside the laboratory: boys’ executive function performance on tasks in videogame play and on a visit to the zoo. J Abnorm Child Psychol. 2002;30:447–62.

    Article  PubMed  Google Scholar 

  66. • van Holst RJ, Lemmens JS, Valkenburg PM, Peter J, Veltman DJ, Goudriaan AE. Attentional bias and disinhibition toward gaming cues are related to problem gaming in male adolescents. J Adolesc Health Off Publ Soc Adolesc Med. 2012;50:541–6 Error biases in IGD group shows a compromised ability to adapt to non-gaming task - similar attentional bias findings are reported in gambling disorder.

    Article  Google Scholar 

  67. Ding W, Sun J, Sun Y-W, Chen X, Zhou Y, Zhuang Z, et al. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behav Brain Funct BBF. 2014;10:20.

    Article  PubMed  Google Scholar 

  68. Mainz V, Drüke B, Boecker M, Kessel R, Gauggel S, Forkmann T. Influence of cue exposure on inhibitory control and brain activation in patients with alcohol dependence. Front Hum Neurosci [Internet]. 2012 [cited 2020 Jul 8];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340941/

  69. Hofmann W, Friese M, Strack F. Impulse and self-control from a dual-systems perspective. Perspect Psychol Sci J Assoc Psychol Sci. 2009;4:162–76.

    Article  Google Scholar 

  70. Metcalfe J, Mischel W. A hot/cool-system analysis of delay of gratification: dynamics of willpower. Psychol Rev. 1999;106:3–19.

    Article  CAS  PubMed  Google Scholar 

  71. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kwako LE, Momenan R, Litten RZ, Koob GF, Goldman D. Addictions Neuroclinical assessment: a neuroscience-based framework for addictive disorders. Biol Psychiatry. 2016;80:179–89.

    Article  PubMed  Google Scholar 

  73. Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013;108:44–79.

    Article  PubMed  Google Scholar 

  74. Cai W, Cannistraci CJ, Gore JC, Leung H-C. Sensorimotor-independent prefrontal activity during response inhibition. Hum Brain Mapp. 2014;35:2119–36.

    Article  PubMed  Google Scholar 

  75. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Argyriou E, Davison CB, Lee TTC. Response inhibition and internet gaming disorder: a meta-analysis. Addict Behav. 2017;71:54–60.

    Article  PubMed  Google Scholar 

  77. Verbruggen F, Logan GD. Response inhibition in the stop-signal paradigm. Trends Cogn Sci. 2008;12:418–24.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron. 2018;98:886–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Noël X, Van der Linden M, d’Acremont M, Colmant M, Hanak C, Pelc I, et al. Cognitive biases toward alcohol-related words and executive deficits in polysubstance abusers with alcoholism. Addict Abingdon Engl. 2005;100:1302–9.

    Article  Google Scholar 

  80. Noël X, Van der Linden M, d’Acremont M, Bechara A, Dan B, Hanak C, et al. Alcohol cues increase cognitive impulsivity in individuals with alcoholism. Psychopharmacology (Berl). 2007;192:291–8.

    Article  PubMed  CAS  Google Scholar 

  81. Fuentes D, Tavares H, Artes R, Gorenstein C. Self-reported and neuropsychological measures of impulsivity in pathological gambling. J Int Neuropsychol Soc JINS. 2006;12:907–12.

    PubMed  Google Scholar 

  82. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res. 2005;23:137–51.

    Article  PubMed  Google Scholar 

  83. Roca M, Torralva T, López P, Cetkovich M, Clark L, Manes F. Executive functions in pathologic gamblers selected in an ecologic setting. Cogn Behav Neurol Off J Soc Behav Cogn Neurol. 2008;21:1–4.

    Article  Google Scholar 

  84. Kertzman S, Lowengrub K, Aizer A, Nahum ZB, Kotler M, Dannon PN. Stroop performance in pathological gamblers. Psychiatry Res. 2006;142:1–10.

    Article  PubMed  Google Scholar 

  85. Expósito J, Andrés-Pueyo A. The effects of impulsivity on the perceptual and decision stages in a choice reaction time task. Personal Individ Differ. 1997;22:693–7.

    Article  Google Scholar 

  86. Keilp JG, Sackeim HA, Mann JJ. Correlates of trait impulsiveness in performance measures and neuropsychological tests. Psychiatry Res. 2005;135:191–201.

    Article  PubMed  Google Scholar 

  87. Kertzman S, Lowengrub K, Aizer A, Vainder M, Kotler M, Dannon PN. Go-no-go performance in pathological gamblers. Psychiatry Res. 2008;161:1–10.

    Article  PubMed  Google Scholar 

  88. Grant JE, Chamberlain SR, Schreiber LRN, Odlaug BL. Gender-related clinical and neurocognitive differences in individuals seeking treatment for pathological gambling. J Psychiatr Res. 2012;46:1206–11.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Klein TA, Ullsperger M, Danielmeier C. Error awareness and the insula: links to neurological and psychiatric diseases. Front Hum Neurosci. 2013;7:14.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lee H, Voss MW, Prakash RS, Boot WR, Vo LTK, Basak C, et al. Videogame training strategy-induced change in brain function during a complex visuomotor task. Behav Brain Res. 2012;232:348–57.

    Article  PubMed  Google Scholar 

  91. •• Gleich T, Lorenz RC, Gallinat J, Kühn S. Functional changes in the reward circuit in response to gaming-related cues after training with a commercial video game. NeuroImage. 2017;152:467–75 One of the first longitudinal studies looking at brain changes associated with repeated play of a commercial video game in previously inexperienced players. The results show alterations in reward circuit responses (decreased dorsolateral prefrontal cortex signaling) following regular play after only 2 months.

    Article  PubMed  Google Scholar 

  92. Verbruggen F, Aron AR, Band GP, Beste C, Bissett PG, Brockett AT, et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife. 2019;8.

  93. Schachar RJ, Forget-Dubois N, Dionne G, Boivin M, Robaey P. Heritability of response inhibition in children. J Int Neuropsychol Soc JINS. 2011;17:238–47.

    Article  PubMed  Google Scholar 

  94. Bean DrA. Working with video gamers and game in therapy: a clinician’s guide. 2018.

    Book  Google Scholar 

  95. King DL, Delfabbro PH. Predatory monetization schemes in video games (e.g. ’loot boxes’) and internet gaming disorder. Addict Abingdon Engl. 2018;113:1967–9.

    Article  Google Scholar 

  96. Verbruggen F, Schneider DW, Logan GD. How to stop and change a response: the role of goal activation in multitasking. J Exp Psychol Hum Percept Perform. 2008;34:1212–28.

    Article  PubMed  Google Scholar 

  97. Lawrence AJ, Luty J, Bogdan NA, Sahakian BJ, Clark L. Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology (Berl). 2009;207:163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug Alcohol Depend. 2006;84:231–9.

    Article  PubMed  Google Scholar 

  99. Kräplin A, Bühringer G, Oosterlaan J, van den Brink W, Goschke T, Goudriaan AE. Dimensions and disorder specificity of impulsivity in pathological gambling. Addict Behav. 2014;39:1646–51.

    Article  PubMed  Google Scholar 

  100. Rodriguez-Jimenez R, Avila C, Jimenez-Arriero MA, Ponce G, Monasor R, Jimenez M, et al. Impulsivity and sustained attention in pathological gamblers: influence of childhood ADHD history. J Gambl Stud. 2006;22:451–61.

    Article  CAS  PubMed  Google Scholar 

  101. Grant JE, Chamberlain SR, Odlaug BL, Potenza MN, Kim SW. Memantine shows promise in reducing gambling severity and cognitive inflexibility in pathological gambling: a pilot study. Psychopharmacology (Berl). 2010;212:603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hughes ME, Johnston PJ, Fulham WR, Budd TW, Michie PT. Stop-signal task difficulty and the right inferior frontal gyrus. Behav Brain Res. 2013;256:205–13.

    Article  PubMed  Google Scholar 

  103. Dong G, Devito EE, Du X, Cui Z. Impaired inhibitory control in “internet addiction disorder”: a functional magnetic resonance imaging study. Psychiatry Res. 2012;203:153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang Y, Lin X, Zhou H, Xu J, Du X, Dong G. Brain activity toward gaming-related cues in internet gaming disorder during an addiction stroop task. Front Psychol. 2016;7:714.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Smith DG, Ersche KD. Using a drug-word Stroop task to differentiate recreational from dependent drug use. CNS Spectr. 2014;19:247–55.

    Article  PubMed  Google Scholar 

  106. Smith DG, Simon Jones P, Bullmore ET, Robbins TW, Ersche KD. Enhanced orbitofrontal cortex function and lack of attentional bias to cocaine cues in recreational stimulant users. Biol Psychiatry. 2014;75:124–31.

    Article  CAS  PubMed  Google Scholar 

  107. van Timmeren T, Daams JG, van Holst RJ, Goudriaan AE. Compulsivity-related neurocognitive performance deficits in gambling disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;84:204–17.

    Article  PubMed  Google Scholar 

  108. McCusker CG, Gettings B. Automaticity of cognitive biases in addictive behaviours: further evidence with gamblers. Br J Clin Psychol. 1997;36:543–54.

    Article  CAS  PubMed  Google Scholar 

  109. Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC. An event-related functional MRI study of the stroop color word interference task. Cereb Cortex N Y N 1991. 2000;10:552–60.

    CAS  Google Scholar 

  110. Ridderinkhof KR, van den Wildenberg WPM, Segalowitz SJ, Carter CS. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004;56:129–40.

    Article  PubMed  Google Scholar 

  111. Carlisle NB. Flexibility in attentional control: multiple sources and suppression. Yale J Biol Med. 2019;92:103–13.

    PubMed  PubMed Central  Google Scholar 

  112. Anderson BA. What is abnormal about addiction-related attentional biases? Drug Alcohol Depend. 2016;167:8–14.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci. 2008;363:3137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wartberg L, Kriston L, Zieglmeier M, Lincoln T, Kammerl R. A longitudinal study on psychosocial causes and consequences of Internet gaming disorder in adolescence. Psychol Med. 2019;49:287–94.

    Article  PubMed  Google Scholar 

  115. Engelhardt CR, Hilgard J, Bartholow BD. Acute exposure to difficult (but not violent) video games dysregulates cognitive control. Comput Hum Behav. 2015;45:85–92.

    Article  Google Scholar 

  116. Kaplan S, Berman MG. Directed attention as a common resource for executive functioning and self-regulation. Perspect Psychol Sci J Assoc Psychol Sci. 2010;5:43–57.

    Article  Google Scholar 

  117. Swick D, Ashley V, Turken AU. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008;9:102.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Metcalf O, Pammer K. Physiological arousal deficits in addicted gamers differ based on preferred game genre. Eur Addict Res. 2014;20:23–32.

    Article  PubMed  Google Scholar 

  119. Grillon C, Robinson OJ, Mathur A, Ernst M. Effect of attention control on sustained attention during induced anxiety. Cogn Emot. 2016;30:700–12.

    Article  PubMed  Google Scholar 

  120. Edwards MS, Edwards EJ, Lyvers M. Cognitive trait anxiety, stress and effort interact to predict inhibitory control. Cogn Emot. 2017;31:671–86.

    Article  PubMed  Google Scholar 

  121. Kuss DJ. Internet gaming addiction: current perspectives. Psychol Res Behav Manag. 2013;6:125–37.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miller C. Video Games and ADHD | ADHD and Attention Disorders in Children [Internet]. Child Mind Inst. [cited 2020 Jul 9]. Available from: https://childmind.org/article/do-video-games-cause-adhd/

  123. Johnstone SJ, Roodenrys SJ, Johnson K, Bonfield R, Bennett SJ. Game-based combined cognitive and neurofeedback training using focus pocus reduces symptom severity in children with diagnosed AD/HD and subclinical AD/HD. Int J Psychophysiol Off J Int Organ Psychophysiol. 2017;116:32–44.

    Google Scholar 

  124. Commissioner O of the. FDA Permits marketing of first game-based digital therapeutic to improve attention function in children with ADHD [Internet]. FDA. FDA; 2020 [cited 2020 Jul 9]. Available from: https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-first-game-based-digital-therapeutic-improve-attention-function-children-adhd

  125. Yerys BE, Bertollo JR, Kenworthy L, Dawson G, Marco EJ, Schultz RT, et al. Brief Report: Pilot Study of a novel interactive digital treatment to improve cognitive control in children with autism spectrum disorder and co-occurring ADHD symptoms. J Autism Dev Disord [Internet]. 2019 [cited 2020 Jul 9];49. Available from;49:1727–37. https://doi.org/10.1007/s10803-018-3856-7.

    Article  Google Scholar 

  126. Anguera JA, Brandes-Aitken AN, Antovich AD, Rolle CE, Desai SS, Marco EJ. A pilot study to determine the feasibility of enhancing cognitive abilities in children with sensory processing dysfunction. PLOS ONE. Public Library of Science. 2017;12:e0172616.

    Article  CAS  Google Scholar 

  127. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, et al. Video game training enhances cognitive control in older adults. Nature. Nature Publishing Group. 2013;501:97–101.

    CAS  Google Scholar 

  128. Dong G, Huang J, Du X. Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. J Psychiatr Res. 2011;45:1525–9.

    Article  PubMed  Google Scholar 

  129. Dong G, Hu Y, Lin X. Reward/punishment sensitivities among internet addicts: implications for their addictive behaviors. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:139–45.

    Article  PubMed  Google Scholar 

  130. Dong G, Li H, Wang L, Potenza MN. Cognitive control and reward/loss processing in Internet gaming disorder: results from a comparison with recreational Internet game-users. Eur Psychiatry J Assoc Eur Psychiatr. 2017;44:30–8.

    Article  CAS  Google Scholar 

  131. Wang L, Wu L, Wang Y, Li H, Liu X, Du X, et al. Altered brain activities associated with craving and cue reactivity in people with internet gaming disorder: evidence from the comparison with recreational internet game users. Front Psychol. 2017;8:1150.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ko C-H, Liu G-C, Hsiao S, Yen J-Y, Yang M-J, Lin W-C, et al. Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res. 2009;43:739–47.

    Article  PubMed  Google Scholar 

  133. Pawlikowski M, Brand M. Excessive Internet gaming and decision making: do excessive World of Warcraft players have problems in decision making under risky conditions? Psychiatry Res. 2011;188:428–33.

    Article  PubMed  Google Scholar 

  134. Lin X, Zhou H, Dong G, Du X. Impaired risk evaluation in people with Internet gaming disorder: fMRI evidence from a probability discounting task. Prog Neuropsychopharmacol Biol Psychiatry. 2015;56:142–8.

    Article  PubMed  Google Scholar 

  135. Hahn T, Notebaert KH, Dresler T, Kowarsch L, Reif A, Fallgatter AJ. Linking online gaming and addictive behavior: converging evidence for a general reward deficiency in frequent online gamers. Front Behav Neurosci. 2014;8:385.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zha R, Bu J, Wei Z, Han L, Zhang P, Ren J, et al. Transforming brain signals related to value evaluation and self-control into behavioral choices. Hum Brain Mapp. 2019;40:1049–61.

    Article  PubMed  Google Scholar 

  137. Rolls ET. The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia. 2019;128:14–43.

    Article  PubMed  Google Scholar 

  138. van Veen V, Carter CS. The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav. 2002;77:477–82.

    Article  PubMed  Google Scholar 

  139. Reuter J, Raedler T, Rose M, Hand I, Gläscher J, Büchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8:147–8.

    Article  CAS  PubMed  Google Scholar 

  140. Allain F, Minogianis E-A, Roberts DCS, Samaha A-N. How fast and how often: The pharmacokinetics of drug use are decisive in addiction. Neurosci Biobehav Rev. 2015;56:166–79.

    Article  PubMed  Google Scholar 

  141. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci Off J Soc Neurosci. 2001;21:RC159.

    Article  CAS  Google Scholar 

  142. Beck A, Schlagenhauf F, Wüstenberg T, Hein J, Kienast T, Kahnt T, et al. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry. 2009;66:734–42.

    Article  CAS  PubMed  Google Scholar 

  143. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Peters J, Bromberg U, Schneider S, Brassen S, Menz M, Banaschewski T, et al. Lower ventral striatal activation during reward anticipation in adolescent smokers. Am J Psychiatry. 2011;168:540–9.

    Article  PubMed  Google Scholar 

  145. •• Luijten M, Schellekens AF, Kühn S, Machielse MWJ, Sescousse G. Disruption of reward processing in addiction : an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017;74:387–98 A Meta-analysis showing areas of overlap and difference between substance-based and non-substance-based addictive disorders.

    Article  PubMed  Google Scholar 

  146. Schou Andreassen C, Billieux J, Griffiths MD, Kuss DJ, Demetrovics Z, Mazzoni E, et al. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: a large-scale cross-sectional study. Psychol Addict Behav J Soc Psychol Addict Behav. 2016;30:252–62.

    Article  Google Scholar 

  147. • U.S. video gamer gender statistics 2019 | Statista [Internet]. [cited 2020 Jul 13]. Available from: https://www.statista.com/statistics/232383/gender-split-of-us-computer-and-video-gamers/

  148. Clark L, Lawrence AJ, Astley-Jones F, Gray N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron. 2009;61:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dixon MJ, Larche CJ, Stange M, Graydon C, Fugelsang JA. Near-misses and stop buttons in slot machine play: an investigation of how they affect players, and may foster erroneous cognitions. J Gambl Stud. 2018;34:161–80.

    Article  PubMed  Google Scholar 

  150. Dixon MJ, Harrigan KA, Sandhu R, Collins K, Fugelsang JA. Losses disguised as wins in modern multi-line video slot machines. Addict Abingdon Engl. 2010;105:1819–24.

    Article  Google Scholar 

  151. Graydon C, Dixon MJ, Stange M, Fugelsang JA. Gambling despite financial loss-the role of losses disguised as wins in multi-line slots. Addict Abingdon Engl. 2019;114:119–24.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Gambling Research Exchange of Ontario (GREO) and the Peter Boris Centre for Addictions Research (PBCAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris M. Balodis.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Addictions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legault, M.C.B., Liu, H.Z. & Balodis, I.M. Neuropsychological Constructs in Gaming Disorders: a Systematic Review. Curr Behav Neurosci Rep 8, 59–76 (2021). https://doi.org/10.1007/s40473-021-00230-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-021-00230-z

Keywords

Navigation