Skip to main content

Advertisement

Log in

Review of Major Drug-Drug Interactions in Thoracic Transplantation

  • Thoracic Transplantation (J Kobashigawa, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The first human lung transplant surgery in the world was done in 1963, followed by the first heart transplant in 1967, making this year its 50th anniversary. Since then, there has been great advancement in immunotherapy, with the adoption of calcineurin inhibitors (CNI), mycophenolate mofetil, and proliferation signal inhibitors (PSI). However, while these medications are crucial to maintenance of allograft function and prevention of allograft rejection, they have many toxicities and side effects, which make therapeutic dose monitoring and recognition of drug-drug interactions of critical importance.

Recent Findings

Most of drug-drug interactions in transplant medicine can be explained through the mechanism of CYP3A4 and P-glycoprotein.

Summary

A large component of the medical management of post-transplant care is in the appropriate utilization of immunosuppression drugs while minimizing side effects and drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Chambers DC, Yusen RD, Cherikh WS, Goldfarb SB, Kucheryavaya AY, Khusch K, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult lung and heart-lung transplantation report—2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1047–59.

    Article  PubMed  Google Scholar 

  2. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report—2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1037–46.

    Article  PubMed  Google Scholar 

  3. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–5.

    Article  PubMed  CAS  Google Scholar 

  4. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA. 2001;286(18):2270–9.

    Article  PubMed  CAS  Google Scholar 

  5. Srinivas TR, Meier-Kriesche HU, Kaplan B. Pharmacokinetic principles of immunosuppressive drugs. Am J Transplant. 2005;5(2):207–17.

    Article  PubMed  CAS  Google Scholar 

  6. Page RL 2nd, Miller GG, Lindenfeld J. Drug therapy in the heart transplant recipient: part IV: drug-drug interactions. Circulation. 2005;111(2):230–9.

    Article  PubMed  Google Scholar 

  7. • Wanwimolruk S, Prachayasittikul V. Cytochrome P450 enzyme mediated herbal drug interactions (part 1). EXCLI J. 2014;13:347–91. Focused review on clinically relavent herbal medications involved in CYP450 pathway.

    PubMed  PubMed Central  Google Scholar 

  8. Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF, Christians U. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285(3):1104–12.

    PubMed  CAS  Google Scholar 

  9. Murthy JN, Yatscoff RW, Soldin SJ. Cyclosporine metabolite cross-reactivity in different cyclosporine assays. Clin Biochem. 1998;31(3):159–63.

    Article  PubMed  CAS  Google Scholar 

  10. Murthy JN, Davis DL, Yatscoff RW, Soldin SJ. Tacrolimus metabolite cross-reactivity in different tacrolimus assays. Clin Biochem. 1998;31(8):613–7.

    Article  PubMed  CAS  Google Scholar 

  11. Paine MF, Leung LY, Lim HK, Liao K, Oganesian A, Zhang MY, et al. Identification of a novel route of extraction of sirolimus in human small intestine: roles of metabolism and secretion. J Pharmacol Exp Ther. 2002;301(1):174–86.

    Article  PubMed  CAS  Google Scholar 

  12. Tokunaga Y, Alak AM. FK506 (tacrolimus) and its immunoreactive metabolites in whole blood of liver transplant patients and subjects with mild hepatic dysfunction. Pharm Res. 1996;13(1):137–40.

    Article  PubMed  CAS  Google Scholar 

  13. Christians U, Jacobsen W, Benet LZ, Lampen A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet. 2002;41(11):813–51.

    Article  PubMed  CAS  Google Scholar 

  14. Christians U, Sewing KF. Alternative cyclosporine metabolic pathways and toxicity. Clin Biochem. 1995;28(6):547–59.

    Article  PubMed  CAS  Google Scholar 

  15. Kuhn B, Jacobsen W, Christians U, Benet LZ, Kollman PA. Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J Med Chem. 2001;44(12):2027–34.

    Article  PubMed  CAS  Google Scholar 

  16. Sattler M, Guengerich FP, Yun CH, Christians U, Sewing KF. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos. 1992;20(5):753–61.

    PubMed  CAS  Google Scholar 

  17. Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release. 1999;62(1–2):25–31.

    Article  PubMed  CAS  Google Scholar 

  18. Watkins PB. Drug metabolism by cytochromes P450 in the liver and small bowel. Gastroenterol Clin N Am. 1992;21(3):511–26.

    CAS  Google Scholar 

  19. Watkins PB. The role of cytochromes P-450 in cyclosporine metabolism. J Am Acad Dermatol. 1990;23(6 Pt 2):1301–9. discussion 9-11

    Article  PubMed  CAS  Google Scholar 

  20. Macphee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation. 2002;74(11):1486–9.

    Article  PubMed  CAS  Google Scholar 

  21. MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant. 2004;4(6):914–9.

    Article  PubMed  CAS  Google Scholar 

  22. Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther. 2003;74(3):245–54.

    Article  PubMed  CAS  Google Scholar 

  23. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11(9):773–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91.

    Article  PubMed  CAS  Google Scholar 

  25. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002;54(10):1271–94.

    Article  PubMed  CAS  Google Scholar 

  26. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics. 2002;12(2):121–32.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014;53(2):123–39.

    Article  PubMed  CAS  Google Scholar 

  29. Yates CR, Zhang W, Song P, Li S, Gaber AO, Kotb M, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol. 2003;43(6):555–64.

    Article  PubMed  CAS  Google Scholar 

  30. Chen YK, Han LZ, Xue F, Shen CH, Lu J, Yang TH, et al. Personalized tacrolimus dose requirement by CYP3A5 but not ABCB1 or ACE genotyping in both recipient and donor after pediatric liver transplantation. PLoS One. 2014;9(10):e109464.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eidens M, Weise A, Klemm M, Fleischer M, Prause S. Development and validation of a rapid and reliable real-time PCR method for CYP3A5 genotyping. Clin Lab. 2015;61(3–4):353–62.

    PubMed  CAS  Google Scholar 

  32. MacPhee IA, Holt DW. A pharmacogenetic strategy for immunosuppression based on the CYP3A5 genotype. Transplantation. 2008;85(2):163–5.

    Article  PubMed  CAS  Google Scholar 

  33. • Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19–24. Summary of published literature on CYP3A5 expressers and none-expressors and tacrolimus dose recommendations based on genotypes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.

    PubMed  CAS  Google Scholar 

  35. Watkins PB, Wrighton SA, Schuetz EG, Molowa DT, Guzelian PS. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J Clin Invest. 1987;80(4):1029–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Stiff DD, Venkataramanan R, Prasad TN. Metabolism of FK 506 in differentially induced rat liver microsomes. Res Commun Chem Pathol Pharmacol. 1992;78(1):121–4.

    PubMed  CAS  Google Scholar 

  37. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29(6):404–30.

    Article  PubMed  CAS  Google Scholar 

  38. Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998;35(5):361–90.

    Article  PubMed  CAS  Google Scholar 

  39. Mahnke CB, Sutton RM, Venkataramanan R, Michaels M, Kurland G, Boyle GJ, et al. Tacrolimus dosage requirements after initiation of azole antifungal therapy in pediatric thoracic organ transplantation. Pediatr Transplant. 2003;7(6):474–8.

    Article  PubMed  CAS  Google Scholar 

  40. VFEND. Pfizer. 2010.

  41. •• Vanhove T, Bouwsma H, Hilbrands L, Swen JJ, Spriet I, Annaert P, et al. Determinants of the magnitude of interaction between tacrolimus and voriconazole/posaconazole in solid organ recipients. Am J Transplant. 2017;17(9):2372–80. Focused on a large lung transplant recipient cohort, evaluating effect of tacrolimus-azole administration on dose-corrected trough concentration.

    Article  PubMed  CAS  Google Scholar 

  42. Lecefel C, Eloy P, Chauvin B, Wyplosz B, Amilien V, Massias L, et al. Worsening pneumonitis due to a pharmacokinetic drug-drug interaction between everolimus and voriconazole in a renal transplant patient. J Clin Pharm Ther. 2015;40(1):119–20.

    Article  PubMed  CAS  Google Scholar 

  43. •• Outeda Macias M, Salvador Garrido P, Elberdin Pazos L, Martin Herranz MI. Management of everolimus and voriconazole interaction in lung transplant patients. Ther Drug Monit. 2016;38(3):305–12. Focused on a lung transplant recipient cohort, evaluating effect of everolimus-voriconazole administration on trough concentrations and concentration/dose ratio.

    Article  PubMed  CAS  Google Scholar 

  44. Gupta SK, Bakran A, Johnson RW, Rowland M. Cyclosporin-erythromycin interaction in renal transplant patients. Br J Clin Pharmacol. 1989;27(4):475–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jones TE, Morris RG. Pharmacokinetic interaction between tacrolimus and diltiazem: dose-response relationship in kidney and liver transplant recipients. Clin Pharmacokinet. 2002;41(5):381–8.

    Article  PubMed  CAS  Google Scholar 

  46. Huisman MT, Smit JW, Schinkel AH. Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS. 2000;14(3):237–42.

    Article  PubMed  CAS  Google Scholar 

  47. Izzedine H, Launay-Vacher V, Baumelou A, Deray G. Antiretroviral and immunosuppressive drug-drug interactions: an update. Kidney Int. 2004;66(2):532–41.

    Article  PubMed  CAS  Google Scholar 

  48. Shapiro LE, Shear NH. Drug interactions: proteins, pumps, and P-450s. J Am Acad Dermatol. 2002;47(4):467–84. quiz 85-8

    Article  PubMed  Google Scholar 

  49. Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clin Pharmacokinet. 2015;54(7):709–35.

    Article  PubMed  CAS  Google Scholar 

  50. Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013;52(9):751–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Christians U, Strom T, Zhang YL, Steudel W, Schmitz V, Trump S, et al. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2006;28(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  52. Wu X, Li Q, Xin H, Yu A, Zhong M. Effects of berberine on the blood concentration of cyclosporin A in renal transplanted recipients: clinical and pharmacokinetic study. Eur J Clin Pharmacol. 2005;61(8):567–72.

    Article  PubMed  CAS  Google Scholar 

  53. Xin HW, Wu XC, Li Q, Yu AR, Zhong MY, Liu YY. The effects of berberine on the pharmacokinetics of cyclosporin A in healthy volunteers. Methods Find Exp Clin Pharmacol. 2006;28(1):25–9.

    Article  PubMed  CAS  Google Scholar 

  54. Tsukamoto S, Aburatani M, Ohta T. Isolation of CYP3A4 inhibitors from the black cohosh (Cimicifuga racemosa). Evid Based Complement Alternat Med. 2005;2(2):223–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tsunoda SM, Harris RZ, Christians U, Velez RL, Freeman RB, Benet LZ, et al. Red wine decreases cyclosporine bioavailability. Clin Pharmacol Ther. 2001;70(5):462–7.

    Article  PubMed  CAS  Google Scholar 

  56. Jaeger W, Benet LZ, Bornheim LM. Inhibition of cyclosporine and tetrahydrocannabinol metabolism by cannabidiol in mouse and human microsomes. Xenobiotica. 1996;26(3):275–84.

    Article  PubMed  CAS  Google Scholar 

  57. Lee M, Min DI, Ku YM, Flanigan M. Effect of grapefruit juice on pharmacokinetics of microemulsion cyclosporine in African American subjects compared with Caucasian subjects: does ethnic difference matter? J Clin Pharmacol. 2001;41(3):317–23.

    Article  PubMed  Google Scholar 

  58. Edwards DJ, Fitzsimmons ME, Schuetz EG, Yasuda K, Ducharme MP, Warbasse LH, et al. 6′,7′-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin Pharmacol Ther. 1999;65(3):237–44.

    Article  PubMed  CAS  Google Scholar 

  59. Chiang HM, Chao PD, Hsiu SL, Wen KC, Tsai SY, Hou YC. Ginger significantly decreased the oral bioavailability of cyclosporine in rats. Am J Chin Med. 2006;34(5):845–55.

    Article  PubMed  CAS  Google Scholar 

  60. Vischini G, Niscola P, Stefoni A, Farneti F. Increased plasma levels of tacrolimus after ingestion of green tea. Am J Kidney Dis. 2011;58(2):329.

    Article  PubMed  Google Scholar 

  61. Hou YC, Lin SP, Chao PD. Liquorice reduced cyclosporine bioavailability by activating P-glycoprotein and CYP 3A. Food Chem. 2012;135(4):2307–12.

    Article  PubMed  CAS  Google Scholar 

  62. Fildes JE, Yonan N, Keevil BG. Melatonin—a pleiotropic molecule involved in pathophysiological processes following organ transplantation. Immunology. 2009;127(4):443–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Khuu T, Hickey A, Deng MC. Pomegranate-containing products and tacrolimus: a potential interaction. J Heart Lung Transplant. 2013;32(2):272–4.

    Article  PubMed  Google Scholar 

  64. Yu CP, Wu PP, Hou YC, Lin SP, Tsai SY, Chen CT, et al. Quercetin and rutin reduced the bioavailability of cyclosporine from Neoral, an immunosuppressant, through activating P-glycoprotein and CYP 3A4. J Agric Food Chem. 2011;59(9):4644–8.

    Article  PubMed  CAS  Google Scholar 

  65. Lai MY, Hsiu SL, Hou YC, Tsai SY, Chao PD. Significant decrease of cyclosporine bioavailability in rats caused by a decoction of the roots of Scutellaria baicalensis. Planta Med. 2004;70(2):132–7.

    Article  PubMed  CAS  Google Scholar 

  66. Hebert MF, Park JM, Chen YL, Akhtar S, Larson AM. Effects of St. John’s wort (Hypericum perforatum) on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol. 2004;44(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  67. Mai I, Stormer E, Bauer S, Kruger H, Budde K, Roots I. Impact of St John’s wort treatment on the pharmacokinetics of tacrolimus and mycophenolic acid in renal transplant patients. Nephrol Dial Transplant. 2003;18(4):819–22.

    Article  PubMed  CAS  Google Scholar 

  68. Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions and interindividual variability. Drug Metab Dispos. 1995;23(12):1315–24.

    PubMed  CAS  Google Scholar 

  69. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268(9):6077–80.

    PubMed  CAS  Google Scholar 

  70. Dean PG, Lund WJ, Larson TS, Prieto M, Nyberg SL, Ishitani MB, et al. Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus. Transplantation. 2004;77(10):1555–61.

    Article  PubMed  CAS  Google Scholar 

  71. King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43.

    Article  PubMed  Google Scholar 

  72. Andreassen AK, Andersson B, Gustafsson F, Eiskjaer H, Radegran G, Gude E, et al. Everolimus initiation and early calcineurin inhibitor withdrawal in heart transplant recipients: a randomized trial. Am J Transplant. 2014;14(8):1828–38.

    Article  PubMed  CAS  Google Scholar 

  73. Lindenfeld J, Page RL 2nd, Zolty R, Shakar SF, Levi M, Lowes B, et al. Drug therapy in the heart transplant recipient: part III: common medical problems. Circulation. 2005;111(1):113–7.

    Article  PubMed  Google Scholar 

  74. Gavalda J, Meije Y, Fortun J, Roilides E, Saliba F, Lortholary O, et al. Invasive fungal infections in solid organ transplant recipients. Clin Microbiol Infect. 2014;20(Suppl 7):27–48.

    Article  PubMed  Google Scholar 

  75. Shoham S. Emerging fungal infections in solid organ transplant recipients. Infect Dis Clin N Am. 2013;27(2):305–16.

    Article  Google Scholar 

  76. Back DJ, Tjia JF. Comparative effects of the antimycotic drugs ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporin by human liver microsomes. Br J Clin Pharmacol. 1991;32(5):624–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 2005;28(9):1805–8.

    Article  PubMed  CAS  Google Scholar 

  78. Wexler D, Courtney R, Richards W, Banfield C, Lim J, Laughlin M. Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur J Pharm Sci. 2004;21(5):645–53.

    Article  PubMed  CAS  Google Scholar 

  79. Vasquez E, Pollak R, Benedetti E. Clotrimazole increases tacrolimus blood levels: a drug interaction in kidney transplant patients. Clin Transpl. 2001;15(2):95–9.

    Article  CAS  Google Scholar 

  80. Page RL 2nd, Mueller SW, Levi ME, Lindenfeld J. Pharmacokinetic drug-drug interactions between calcineurin inhibitors and proliferation signal inhibitors with anti-microbial agents: implications for therapeutic drug monitoring. J Heart Lung Transplant. 2011;30(2):124–35.

    Article  PubMed  Google Scholar 

  81. Martin JE, Daoud AJ, Schroeder TJ, First MR. The clinical and economic potential of cyclosporin drug interactions. PharmacoEconomics. 1999;15(4):317–37.

    Article  PubMed  CAS  Google Scholar 

  82. Soto Alvarez J, Sacristan Del Castillo JA, Alsar Ortiz MJ. Interaction between ciclosporin and ceftriaxone. Nephron. 1991;59(4):681–2.

    Article  PubMed  CAS  Google Scholar 

  83. Huwyler J, Wright MB, Gutmann H, Drewe J. Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin. Curr Drug Metab. 2006;7(2):119–26.

    Article  PubMed  CAS  Google Scholar 

  84. Lang CC, Jamal SK, Mohamed Z, Mustafa MR, Mustafa AM, Lee TC. Evidence of an interaction between nifedipine and nafcillin in humans. Br J Clin Pharmacol. 2003;55(6):588–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Borras-Blasco J, Conesa-Garcia V, Navarro-Ruiz A, Marin-Jimenez F, Gonzalez-Delgado M, Gomez-Corrons A. Ciprofloxacin, but not levofloxacin, affects cyclosporine blood levels in a patient with pure red blood cell aplasia. Am J Med Sci. 2005;330(3):144–6.

    Article  PubMed  Google Scholar 

  86. Nasir M, Rotellar C, Hand M, Kulczycki L, Alijani MR, Winchester JF. Interaction between ciclosporin and ciprofloxacin. Nephron. 1991;57(2):245–6.

    Article  PubMed  CAS  Google Scholar 

  87. Ibrahim RB, Abella EM, Chandrasekar PH. Tacrolimus-clarithromycin interaction in a patient receiving bone marrow transplantation. Ann Pharmacother. 2002;36(12):1971–2.

    Article  PubMed  Google Scholar 

  88. Kunicki PK, Sobieszczanska-Malek M. Pharmacokinetic interaction between tacrolimus and clarithromycin in a heart transplant patient. Ther Drug Monit. 2005;27(1):107–8.

    Article  PubMed  Google Scholar 

  89. Sketris IS, Wright MR, West ML. Possible role of the intestinal P-450 enzyme system in a cyclosporine-clarithromycin interaction. Pharmacotherapy. 1996;16(2):301–5.

    PubMed  CAS  Google Scholar 

  90. Flexner C. HIV-protease inhibitors. N Engl J Med. 1998;338(18):1281–92.

    Article  PubMed  CAS  Google Scholar 

  91. Kuo PC, Stock PG. Transplantation in the HIV+ patient. Am J Transplant. 2001;1(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  92. Euvrard S, Morelon E, Rostaing L, Goffin E, Brocard A, Tromme I, et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med. 2012;367(4):329–39.

    Article  PubMed  CAS  Google Scholar 

  93. Vadnerkar A, Nguyen MH, Mitsani D, Crespo M, Pilewski J, Toyoda Y, et al. Voriconazole exposure and geographic location are independent risk factors for squamous cell carcinoma of the skin among lung transplant recipients. J Heart Lung Transplant. 2010;29(11):1240–4.

    Article  PubMed  Google Scholar 

  94. Ibrahim SF, Singer JP, Arron ST. Catastrophic squamous cell carcinoma in lung transplant patients treated with voriconazole. Dermatol Surg. 2010;36(11):1752–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Miller DD, Cowen EW, Nguyen JC, McCalmont TH, Fox LP. Melanoma associated with long-term voriconazole therapy: a new manifestation of chronic photosensitivity. Arch Dermatol. 2010;146(3):300–4.

    Article  PubMed  CAS  Google Scholar 

  96. Cowen EW, Nguyen JC, Miller DD, McShane D, Arron ST, Prose NS, et al. Chronic phototoxicity and aggressive squamous cell carcinoma of the skin in children and adults during treatment with voriconazole. J Am Acad Dermatol. 2010;62(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  97. McCarthy KL, Playford EG, Looke DF, Whitby M. Severe photosensitivity causing multifocal squamous cell carcinomas secondary to prolonged voriconazole therapy. Clin Infect Dis. 2007;44(5):e55–6.

    Article  PubMed  CAS  Google Scholar 

  98. Epaulard O, Saint-Raymond C, Villier C, Charles J, Roch N, Beani JC, et al. Multiple aggressive squamous cell carcinomas associated with prolonged voriconazole therapy in four immunocompromised patients. Clin Microbiol Infect. 2010;16(9):1362–4.

    Article  PubMed  CAS  Google Scholar 

  99. Clancy CJ, Nguyen MH. Long-term voriconazole and skin cancer: is there cause for concern? Curr Infect Dis Rep. 2011;13(6):536–43.

    Article  PubMed  Google Scholar 

  100. Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352(13):1317–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Chang.

Ethics declarations

Conflict of Interest

Yu Xie and Deanna Dilibero declare no conflict of interest. David Chang reports stock interest in ABT and ABBV.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Thoracic Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Dilibero, D. & Chang, D.H. Review of Major Drug-Drug Interactions in Thoracic Transplantation. Curr Transpl Rep 5, 220–230 (2018). https://doi.org/10.1007/s40472-018-0200-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-018-0200-2

Keywords

Navigation