Skip to main content

Advertisement

Log in

Established and Emerging Environmental Contributors to Disparities in Asthma and Chronic Obstructive Pulmonary Disease

  • Environmental Epidemiology (F Laden and J Hart, Section Editors)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Multiple respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), display significant socioeconomic and racial/ethnic disparities. The objective of this review is to evaluate the evidence supporting a link between disproportionate environmental exposures and these health disparities.

Recent Findings

Studies suggest that various co-occurring factors related to the home environment, neighborhood environment, non-modifiable individual factors, and individual behaviors and attributes can increase or modify the risk of adverse respiratory outcomes among socioeconomically disadvantaged and racially/ethnically diverse populations. Pollutants in the home environment, including particulate matter, nitrogen dioxide, and pesticides, are elevated among lower socioeconomic status populations and have been implicated in the development or exacerbation of respiratory-related conditions. Neighborhood crime and green space are socioeconomically patterned and linked with asthma outcomes through psychosocial pathways. Non-modifiable individual factors such as genetic predisposition cannot explain environmental health disparities but can increase susceptibility to air pollution and other stressors. Individual behaviors and attributes, including obesity and physical activity, contribute to worse outcomes among those with asthma or COPD.

Summary

The root causes of these multifactorial exposures are complex, but many likely stem from economic forces and racial/ethnic and economic segregation that influence the home environment, neighborhood environment, and access to healthy foods and consumer products. Critical research needs include investigations that characterize exposure to and health implications of numerous stressors simultaneously, both to guard against potential confounding in epidemiological investigations and to consider the cumulative impact of multiple elevated environmental exposures and sociodemographic stressors on health disparities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schraufnagel DE, Blasi F, Kraft M, Gaga M, Finn PW, Rabe KF, et al. An official American Thoracic Society/European Respiratory Society policy statement: disparities in respiratory health. Am J Respir Crit Care Med. 2013;188(7):865–71.

    Article  PubMed  Google Scholar 

  2. Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States, 2005–2009. Natl Health Stat Report. 2011(32):1–14.

  3. Pleasants RA, Riley IL, Mannino DM. Defining and targeting health disparities in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2016;11:2475–96.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kosacz NM, Punturieri A, Croxton TL, Ndenecho MN, Kiley JP, Weinmann GG, et al. Chronic obstructive pulmonary disease among adults—United States, 2011. Centers for Disease Control and Preve Morb Mortal Wkly Rep; 2012. p. 938–43.

  5. National Institutes of Health. Centers of Excellence on Environmental Health Disparities Research, 2014. Available from: https://grants.nih.gov/grants/guide/rfa-files/RFA-ES-14-010.html. Accessed February 27, 2018.

  6. Adamkiewicz G, Zota AR, Fabian MP, Chahine T, Julien R, Spengler JD, et al. Moving environmental justice indoors: understanding structural influences on residential exposure patterns in low-income communities. Am J Public Health. 2011;101(Suppl 1):S238–45.

    Article  PubMed  PubMed Central  Google Scholar 

  7. (WHO) WHO. Tobacco free initiative: second-hand tobacco smoke. Available at: http://www.who.int/tobacco/research/secondhand_smoke/en/, 2018.

  8. Jacobs DE. Environmental health disparities in housing. Am J Public Health. 2011;101(Suppl 1):S115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. World Health Organization. Report on the WHO technical meeting on quantifying disease from inadequate housing. Germany: Bonn; 2005. http://www.euro.who.int/__data/assets/pdf_file/0007/98674/EBD_Bonn_Report.pdf.

  10. Bradman ACJ, Tager I, Lipsett M, Sedgwick J, Macher J, Vargas AB, et al. Association of housing disrepair indicators with cockroach and rodent infestations in a cohort of pregnant Latina women and their children. Environ Health Perspect. 2005;113(12):1795–801.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lu C, Adamkiewicz G, Attfield KR, Kapp M, Spengler JD, Tao L, et al. Household pesticide contamination from indoor pest control applications in urban low-income public housing dwellings: a community-based participatory research. Environ Sci Technol. 2013;47(4):2018–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Quiros-Alcala L, Bradman A, Nishioka M, Harnly ME, Hubbard A, McKone TE, et al. Pesticides in house dust from urban and farmworker households in California: an observational measurement study. Environ Health. 2011;10:19.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang C, Abou El-Nour MM, Bennett GW. Survey of pest infestation, asthma, and allergy in low-income housing. J Community Health. 2008;33(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  14. Whyatt RM, Camann DE, Kinney PL, Reyes A, Ramirez J, Dietrich J, et al. Residential pesticide use during pregnancy among a cohort of urban minority women. Environ Health Perspect. 2002;110:507–14.

  15. Reardon AM, Perzanowski MS, Whyatt RM, Chew GL, Perera FP, Miller RL. Associations between prenatal pesticide exposure and cough, wheeze, and IgE in early childhood. J Allergy Clin Immunol. 2009;124(4):852–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sandel M, Sheward R, Ettinger de Cuba S, Coleman SM, Frank DA, Chilton M, et al. Unstable housing and caregiver and child health in renter families. Pediatrics. 2018;141(2):e20172199.

    Article  PubMed  Google Scholar 

  17. Hernandez D. Affording housing at the expense of health: exploring the housing and neighborhood strategies of poor families. J Fam Issues. 2016;37(7):921–46.

    Article  PubMed  PubMed Central  Google Scholar 

  18. •• Wang Z, May SM, Charoenlap S, Pyle R, Ott NL, Mohammed K, et al. Effects of secondhand smoke exposure on asthma morbidity and health care utilization in children: a systematic review and meta-analysis. Ann Allerg Asthma Im. 2015;115(5):396-U160. Comprehensive systematic review that identified 25 studies linking secondhand smoke with asthma severity in children and determined significant associations with asthma hospitalizations, emergenency department visits, wheeze, and lung function.

  19. Castro-Rodriguez JA, Forno E, Rodriguez-Martinez CE, Celedon JC. Risk and protective factors for childhood asthma: what is the evidence? J Allergy Clin Immunol Pract. 2016;4(6):1111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dick S, Friend A, Dynes K, AlKandari F, Doust E, Cowie H, et al. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years. BMJ Open. 2014;4(11):e006554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Paulin LM, Williams DL, Peng R, Diette GB, McCormack MC, Breysse P, et al. 24-h nitrogen dioxide concentration is associated with cooking behaviors and an increase in rescue medication use in children with asthma. Environ Res. 2017;159:118–23.

    Article  PubMed  CAS  Google Scholar 

  22. Belanger K, Holford TR, Gent JF, Hill ME, Kezik JM, Leaderer BP. Household levels of nitrogen dioxide and pediatric asthma severity. Epidemiology. 2013;24(2):320–30.

    Article  PubMed  PubMed Central  Google Scholar 

  23. • Sbihi H, Koehoorn M, Tamburic L, Brauer M. Asthma trajectories in a population-based birth cohort. Impacts of air pollution and greenness. Am J Respir Crit Care Med. 2017;195(5):607–13. Large birth cohort study with modeled exposure to multiple air pollutants and exposure to green space, with consideration of effects on various asthma phenotypes.

    Article  PubMed  CAS  Google Scholar 

  24. Hernandez AF, Parron T, Alarcon R. Pesticides and asthma. Curr Opin Allergy Clin Immunol. 2011;11(2):90–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hoppin JA, Umbach DM, London SJ, Alavanja MC, Sandler DP. Chemical predictors of wheeze among farmer pesticide applicators in the agricultural health study. Am J Respir Crit Care Med. 2002;165(5):683–9.

    Article  PubMed  Google Scholar 

  26. Fryer AD, Lein PJ, Howard AS, Yost BL, Beckles RA, Jett DA. Mechanisms of organophosphate insecticide-induced airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol. 2004;286(5):L963–9.

    Article  PubMed  CAS  Google Scholar 

  27. Salam MT, Li YF, Langholz B, Gilliland FD, Children's Health Study. Early-life environmental risk factors for asthma: findings from the Children’s Health Study. Environ Health Perspect. 2004;112(6):760–5.

  28. Salameh PBI, Brochard P, Raherison C, Abi Saleh B, Salamon R. Respiratory symptoms in children and exposure to pesticides. Eur Respir J. 2003;22:507–12.

    Article  PubMed  CAS  Google Scholar 

  29. Liu B, Jung KH, Horton MK, Camann DE, Liu X, Reardon AM, et al. Prenatal exposure to pesticide ingredient piperonyl butoxide and childhood cough in an urban cohort. Environ Int. 2012;48:156–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xu X, Nembhard WN, Kan H, Becker A, Talbott EO. Residential pesticide use is associated with children’s respiratory symptoms. J Occup Environ Med. 2012;54(10):1281–7.

    Article  PubMed  CAS  Google Scholar 

  31. Hauser R, Duty S, Godfrey-Bailey L, Calafat AM. Medications as a source of human exposure to phthalates. Environ Health Perspect. 2004;112:751–3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. • O’Connor GT, Lynch SV, Bloomberg GR, Kattan M, Wood RA, Gergen PJ, et al. Early-life home environment and risk of asthma among inner-city children. J Allergy Clin Immunol. 2017. https://doi.org/10.1016/j.jaci.2017.06.040. Birth cohort with consideration of multi-stressor exposures prenatally and in early life for high-risk children, which showed increased asthma risk with prenatal tobacco smoke and higher maternal stress and depression.

  33. Rosenberg SL, Miller GE, Brehm JM, Celedon JC. Stress and asthma: novel insights on genetic, epigenetic, and immunologic mechanisms. J Allergy Clin Immunol. 2014;134(5):1009–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Klok T, Kaptein AA, Brand PLP. Non-adherence in children with asthma reviewed: the need for improvement of asthma care and medical education. Ped Allergy Immunol. 2015;26(3):197–205.

    Article  Google Scholar 

  35. Bellin MH, Land C, Newsome A, Kub J, Mudd SS, Bollinger ME, et al. Caregiver perception of asthma management of children in the context of poverty. J Asthma. 2017;54(2):162–72.

    Article  PubMed  Google Scholar 

  36. Rosa MJ, Just AC, Kloog I, Pantic I, Schnaas L, Lee A, et al. Prenatal particulate matter exposure and wheeze in Mexican children: effect modification by prenatal psychosocial stress. Ann Allergy Asthma Immunol. 2017;119(3):232–7 e1.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Clougherty JE, Levy JI, Kubzansky LD, Ryan PB, Suglia SF, Canner MJ, et al. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect. 2007;115(8):1140–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hughes HK, Matsui EC, Tschudy MM, Pollack CE, Keet CA. Pediatric asthma health disparities: race, hardship, housing, and asthma in a national survey. Acad Pediatr. 2017;17(2):127–34.

    Article  PubMed  Google Scholar 

  39. Colton MD, Laurent JGC, MacNaughton P, Kane J, Bennett-Fripp M, Spengler J, et al. Health benefits of green public housing: associations with asthma morbidity and building-related symptoms. Am J Public Health. 2015;105(12):2482–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chahine T, Subramanian SV, Levy JI. Sociodemographic and geographic variability in smoking in the U.S.: a multilevel analysis of the 2006-2007 current population survey, tobacco use supplement. Soc Sci Med. 2011;73(5):752–8.

    Article  PubMed  CAS  Google Scholar 

  41. Hagstad S, Bjerg A, Ekerljung L, Backman H, Lindberg A, Ronmark E, et al. Passive smoking exposure is associated with increased risk of COPD in never smokers. Chest. 2014;145(6):1298–304.

    Article  PubMed  Google Scholar 

  42. van Koeverden I, Blanc PD, Bowler RP, Arjomandi M. Secondhand tobacco smoke and COPD risk in smokers: a COPDGene study cohort subgroup analysis. COPD. 2015;12(2):182–9.

    Article  PubMed  Google Scholar 

  43. • Hansel NN, McCormack MC, Kim V. The effects of air pollution and temperature on COPD. COPD. 2016;13(3):372–9. Review article summarizing the evidence for the effects of air pollution and temperature on COPD, including consideration of COPD development and exacerbations.

    Article  PubMed  Google Scholar 

  44. Hansel NN, McCormack MC, Belli AJ, Matsui EC, Peng RD, Aloe C, et al. In-home air pollution is linked to respiratory morbidity in former smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(10):1085–90.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martinez FD. Early-life origins of chronic obstructive pulmonary disease. N Engl J Med. 2016;375(9):871–8.

    Article  PubMed  Google Scholar 

  46. Charkhchi P, Fazeli Dehkordy S, Carlos RC. Housing and food insecurity, care access, and health status among the chronically ill: an analysis of the behavioral risk factor surveillance system. J Gen Intern Med. 2018; https://doi.org/10.1007/s11606-017-4255-z.

  47. IOM. How far have we come in reducing health disparities?: progress since 2000: workshop summary. National Academies Press, Washington DC; 2012.

  48. Miller M, Middendorf G, Wood SD. Food availability in the heartland: exploring the effects of neighborhood racial and income composition. Rural Sociol. 2015;80(3):340–61.

    Article  Google Scholar 

  49. Rodriguez D, Carlos HA, Adachi-Mejia AM, Berke EM, Sargent JD. Predictors of tobacco outlet density nationwide: a geographic analysis. Tob Control. 2013;22(5):349–55.

    Article  PubMed  Google Scholar 

  50. Schleicher NC, Johnson TO, Fortmann SP, Henriksen L. Tobacco outlet density near home and school: associations with smoking and norms among US teens. Prev Med. 2016;91:287–93.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sampson RJ, Morenoff JD, Raudenbush S. Social anatomy of racial and ethnic disparities in violence. Am J Pub Health. 2005;95(2):224–32.

    Article  Google Scholar 

  52. Salas-Wright CP, Nelson EJ, Vaughn MG, Gonzalez JMR, Córdova D. Trends in fighting and violence among adolescents in the United States, 2002–2014. Am J Pub Health. 2017;107(6):977–82.

    Article  Google Scholar 

  53. Rosofsky A, Levy JI, Zanobetti A, Janulewicz P, Fabian MP. Temporal trends in air pollution exposure inequality in Massachusetts. Environ Res. 2018;161:76–86.

    Article  PubMed  CAS  Google Scholar 

  54. Clark LP, Millet DB, Marshall JD. Changes in transportation-related air pollution exposures by race-ethnicity and socioeconomic status: outdoor nitrogen dioxide in the United States in 2000 and 2010. Environ Health Perspect. 2017;125(9):097012.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Su JG, Jerrett M, de Nazelle A, Wolch J. Does exposure to air pollution in urban parks have socioeconomic, racial or ethnic gradients? Environ Res. 2011;111(3):319–28.

    Article  PubMed  CAS  Google Scholar 

  56. Casey JA, Morello-Frosch R, Mennitt DJ, Fristrup K, Ogburn EL, James P. Race/ethnicity, socioeconomic status, residential segregation, and spatial variation in noise exposure in the contiguous United States. Environ Health Perspect. 2017;125(7):077017.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jennings V, Baptiste A, Osborne Jelks NT, Skeete R. Urban green space and the pursuit of health equity in parts of the United States. Int J Environ Res Pub Health. 2017;14(11):1432.

    Article  Google Scholar 

  58. Bogar S, Beyer KM. Green space, violence, and crime: a systematic review. Trauma Violence & Abuse. 2016;17(2):160–71.

    Article  Google Scholar 

  59. Han B, Cohen DA, Derose KP, Li J, Williamson S. Violent crime and park use in low-income urban neighborhoods. Am J Preventive Med. 54(3):352–8.

  60. Vangeepuram N, Galvez MP, Teitelbaum SL, Brenner B, Wolff MS. The association between parental perception of neighborhood safety and asthma diagnosis in ethnic minority urban children. J Urban Health. 2012;89(5):758–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ramratnam SK, Han YY, Rosas-Salazar C, Forno E, Brehm JM, Rosser F, et al. Exposure to gun violence and asthma among children in Puerto Rico. Respir Med. 2015;109(8):975–81.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rosas-Salazar C, Han YY, Brehm JM, Forno E, Acosta-Perez E, Cloutier MM, et al. Gun violence, African ancestry, and asthma: a case-control study in Puerto Rican children. Chest. 2016;149(6):1436–44.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Eldeirawi K, Kunzweiler C, Rosenberg N, Riley B, Gao Y, Hebert-Beirne J, et al. Association of neighborhood crime with asthma and asthma morbidity among Mexican American children in Chicago, Illinois. Ann Allergy Asthma Immunol. 117(5):502–7.e1.

  64. Shmool JL, Kubzansky LD, Dotson Newman O, Spengler J, Shepard P, Clougherty JE. Social stressors and air pollution across New York City communities: a spatial approach for assessing correlations among multiple exposures. Environ Health. 2014;13(1):91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Beck AF, Huang B, Ryan PH, Sandel MT, Chen C, Kahn RS. Areas with high rates of police-reported violent crime have higher rates of childhood asthma morbidity. J Pediatr. 2016;173:175–82. e1

    Article  PubMed  PubMed Central  Google Scholar 

  66. Koinis-Mitchell D, Kopel SJ, Salcedo L, McCue C, McQuaid EL. Asthma indicators and neighborhood and family stressors related to urban living in children. Am J Health Behavior. 2014;38(1):22–30.

    Article  Google Scholar 

  67. Chen E, Chim LS, Strunk RC, Miller GE. The role of the social environment in children and adolescents with asthma. Am J Respir Crit Care Med. 2007;176(7):644–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. • Wright AW, Austin M, Booth C, Kliewer W. Systematic review: exposure to community violence and physical health outcomes in youth. J Pedia Psychol. 2017;42(4):364–78. Recent review article summarizing the association between exposure to community violence and asthma or respiratory health in nine studies, of which six found significant associations.

    Google Scholar 

  69. Markevych I, Schoierer J, Hartig T, Chudnovsky A, Hystad P, Dzhambov AM, et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Environ Res. 2017;158:301–17.

    Article  PubMed  CAS  Google Scholar 

  70. Alcock I, White M, Cherrie M, Wheeler B, Taylor J, McInnes R, et al. Land cover and air pollution are associated with asthma hospitalisations: a cross-sectional study. Environ Int. 2017;109:29–41.

    Article  PubMed  CAS  Google Scholar 

  71. Tischer C, Gascon M, Fernandez-Somoano A, Tardon A, Lertxundi Materola A, Ibarluzea J, et al. Urban green and grey space in relation to respiratory health in children. Eur Respir J. 2017;49(6):1502112.

    Article  PubMed  Google Scholar 

  72. Feng X, Astell-Burt T. Is neighborhood green space protective against associations between child asthma, neighborhood traffic volume and perceived lack of area safety? Multilevel analysis of 4447 Australian children. Int J Environ Res Pub Health. 2017;14(5):543.

    Article  Google Scholar 

  73. Vienneau D, de Hoogh K, Faeh D, Kaufmann M, Wunderli JM, Röösli M. More than clean air and tranquillity: residential green is independently associated with decreasing mortality. Environ Int. 2017;108:176–84.

    Article  PubMed  Google Scholar 

  74. Gascon M, Triguero-Mas M, Martínez D, Dadvand P, Rojas-Rueda D, Plasència A, et al. Residential green spaces and mortality: a systematic review. Environ Int. 2016;86:60–7.

    Article  PubMed  Google Scholar 

  75. Ulmer JM, Wolf KL, Backman DR, Tretheway RL, Blain CJA, O’Neil-Dunne JPM, et al. Multiple health benefits of urban tree canopy: the mounting evidence for a green prescription. Health & Place. 2016;42:54–62.

    Article  Google Scholar 

  76. • Lambert KA, Bowatte G, Tham R, Lodge C, Prendergast L, Heinrich J, et al. Residential greenness and allergic respiratory diseases in children and adolescents—a systematic review and meta-analysis. Environ Res. 2017;159:212–21. Recent meta-analysis reporting inconsistent results on the association between residential greenness and allergic respiratory disease in 11 studies.

    Article  PubMed  CAS  Google Scholar 

  77. • Fong KC, Hart JE, James P. A review of epidemiologic studies on greenness and health: updated literature through 2017. Curr Environ Health Rep 2018;5(1):77–87. Recent update on epidemiology literature linking greenness to health. Authors concluded that relationships between greenness and asthma were inconsistent, likely due to the variable way in which greenness is characterised.

  78. • Rodriguez-Villamizar LA, Berney C, Villa-Roel C, Ospina MB, Osornio-Vargas A, Rowe BH. The role of socioeconomic position as an effect-modifier of the association between outdoor air pollution and children’s asthma exacerbations: an equity-focused systematic review. Rev Environ Health. 2016;31(3):297–309. Recent review article concluding there is weak evidence for socioeconomic position as an effect modifier of the association between air pollution and asthma exacerbations.

    Article  PubMed  Google Scholar 

  79. O'Lenick CR, Winquist A, Mulholland JA, Friberg MD, Chang HH, Kramer MR, et al. Assessment of neighbourhood-level socioeconomic status as a modifier of air pollution-asthma associations among children in Atlanta. J Epi Comm Health. 2017;71(2):129–36.

    Article  Google Scholar 

  80. O’ Lenick CR, Chang HH, Kramer MR, Winquist A, Mulholland JA, Friberg MD, et al. Ozone and childhood respiratory disease in three US cities: evaluation of effect measure modification by neighborhood socioeconomic status using a Bayesian hierarchical approach. Environ Health. 2017;16(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Williams DR, Sternthal M, Wright RJ. Social determinants: taking the social context of asthma seriously. Pediatrics. 2009;123(Suppl 3):S174–84.

    Article  PubMed  PubMed Central  Google Scholar 

  82. •• Alexander D, Currie J. Is it who you are or where you live? Residential segregation and racial gaps in childhood asthma. J Health Econ. 2017;55:186–200. Large cohort study and only study found examining residential segregation, a distal social determinant of health.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gwynn RC, Thurston GD. The burden of air pollution: impacts among racial minorities. Environ Health Perspect. 2001;109(Suppl 4):501–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pino-Yanes M, Thakur N, Gignoux CR, Galanter JM, Roth LA, Eng C, et al. Genetic ancestry influences asthma susceptibility and lung function among Latinos. J Allergy Clin Immunol. 2015;135(1):228–35.

    Article  PubMed  Google Scholar 

  85. Parker MM, Foreman MG, Abel HJ, Mathias RA, Hetmanski JB, Crapo JD, et al. Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene study. Genet Epidemiol. 2014;38(7):652–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43(9):887–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Flores C, Ma SF, Pino-Yanes M, Wade MS, Perez-Mendez L, Kittles RA, et al. African ancestry is associated with asthma risk in African Americans. PLoS One. 2012;7(1):e26807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. •• Vonk JM, Scholtens S, Postma DS, Moffatt MF, Jarvis D, Ramasamy A, et al. Adult onset asthma and interaction between genes and active tobacco smoking: the GABRIEL consortium. PLoS One. 2017;12(3):e0172716. Most recent comprehensive meta-analysis on genome-wide interactions in six large studies; study also identified novel polymorphism, showing suggestive evidence for interaction with active tobacco smoking in the onset of adult asthma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hancock DB, Soler Artigas M, Gharib SA, Henry A, Manichaikul A, Ramasamy A, et al. Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet. 2012;8(12):e1003098.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Castaldi PJ, Demeo DL, Hersh CP, Lomas DA, Soerheim IC, Gulsvik A, et al. Impact of non-linear smoking effects on the identification of gene-by-smoking interactions in COPD genetics studies. Thorax. 2011;66(10):903–9.

    Article  PubMed  CAS  Google Scholar 

  91. Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, Reyes-Ruiz NI, Estela del Rio-Navarro B, et al. Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax. 2004;59(1):8–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. •• Gref A, Merid SK, Gruzieva O, Ballereau S, Becker A, Bellander T, et al. Genome-wide interaction analysis of air pollution exposure and childhood asthma with functional follow-up. Am J Respir Crit Care Med. 2017;195(10):1373–83. Most recent comprehensive meta-analysis on genome-wide interactions of air pollution and pediatric asthma; study results indicate that gene-environment interactions are important for asthma development and provide supporting evidence for interaction with air pollution and select SNPs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Moreno-Macias H, Dockery DW, Schwartz J, Gold DR, Laird NM, Sienra-Monge JJ, et al. Ozone exposure, vitamin C intake, and genetic susceptibility of asthmatic children in Mexico City: a cohort study. Respir Res. 2013;14:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wilson-Frederick SM, Thorpe RJ Jr, Bell CN, Bleich SN, Ford JG, LaVeist TA. Examination of race disparities in physical inactivity among adults of similar social context. Ethn Dis. 2014;24(3):363–9.

    PubMed  PubMed Central  Google Scholar 

  95. Centers for Disease Control and Prevention. Prevalence of regular physical activity among adults—United States, 2001 and 2005. MMWR Morb Mortal Wkly Rep. 2007;56(46):1209–12.

    Google Scholar 

  96. Crespo CJ, Smit E, Andersen RE, Carter-Pokras O, Ainsworth BE. Race/ethnicity, social class and their relation to physical inactivity during leisure time: results from the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Prev Med. 2000;18(1):46–53.

    Article  PubMed  CAS  Google Scholar 

  97. Marshall SJ, Jones DA, Ainsworth BE, Reis JP, Levy SS, Macera CA. Race/ethnicity, social class, and leisure-time physical inactivity. Med Sci Sports Exerc. 2007;39(1):44–51.

    Article  PubMed  Google Scholar 

  98. Kong A, Schiffer L, Antonic M, Braunschweig C, Odoms-Young A, Fitzgibbon M. The relationship between home- and individual-level diet quality among African American and Hispanic/Latino households with young children. Int J Behav Nutr Phys Act. 2018;15(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  99. • Gu X, Tucker KL. Dietary quality of the US child and adolescent population: trends from 1999 to 2012 and associations with the use of federal nutrition assistance programs. Am J Clin Nutr. 2017;105(1):194–202. This recent article highlights the fact that vulnerable populations, including racial/ethnically diverse populations and low-income individuals, have poorer dietary quality especially compared to other populations.

    Article  PubMed  CAS  Google Scholar 

  100. Kirkpatrick SI, Dodd KW, Reedy J, Krebs-Smith SM. Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J Acad Nutr Diet. 2012;112(5):624–35. e6

    Article  PubMed  PubMed Central  Google Scholar 

  101. Di Noia J, Schinke SP, Contento IR. Dietary fat intake among urban, African American adolescents. Eat Behav. 2008;9(2):251–6.

    Article  PubMed  Google Scholar 

  102. Wang Y, Jahns L, Tussing-Humphreys L, Xie B, Rockett H, Liang H, et al. Dietary intake patterns of low-income urban African-American adolescents. J Am Diet Assoc. 2010;110(9):1340–5.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005-2006. Environ Health Perspect. 2010;118(5):679–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. • James-Todd TM, Meeker JD, Huang T, Hauser R, Seely EW, Ferguson KK, et al. Racial and ethnic variations in phthalate metabolite concentration changes across full-term pregnancies. J Expo Sci Environ Epidemiol. 2017;27(2):160–6. Article highlights racial/ethnic disparites in exposures to phthlates among pregnant women.

    Article  PubMed  CAS  Google Scholar 

  105. Kobrosly RW, Parlett LE, Stahlhut RW, Barrett ES, Swan SH. Socioeconomic factors and phthalate metabolite concentrations among United States women of reproductive age. Environ Res. 2012;115:11–7.

    Article  PubMed  CAS  Google Scholar 

  106. Dixon AE, Holguin F, Sood A, Salome CM, Pratley RE, Beuther DA, et al. An official American Thoracic Society Workshop report: obesity and asthma. Proc Am Thorac Soc. 2010;7(5):325–35.

    Article  PubMed  Google Scholar 

  107. Beuther DA, Weiss ST, Sutherland ER. Obesity and asthma. Am J Respir Crit Care Med. 2006;174(2):112–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. • Baffi CW, Winnica DE, Holguin F. Asthma and obesity: mechanisms and clinical implications. Asthma Res Pract. 2015;1:–1. This review provides a succinct summary of obesity-related mechanisms and the clinical impact on asthma including highlights on recent progress in the field.

  109. Lambert AA, Putcha N, Drummond MB, Boriek AM, Hanania NA, Kim V, et al. Obesity is associated with increased morbidity in moderate to severe COPD. Chest. 2017;151(1):68–77.

    Article  PubMed  Google Scholar 

  110. McCormack MC, Belli AJ, Kaji DA, Matsui EC, Brigham EP, Peng RD, et al. Obesity as a susceptibility factor to indoor particulate matter health effects in COPD. Eur Respir J. 2015;45(5):1248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lu KD, Breysse PN, Diette GB, Curtin-Brosnan J, Aloe C, Williams DL, et al. Being overweight increases susceptibility to indoor pollutants among urban children with asthma. J Allergy Clin Immunol. 2013;131(4):1017–23, 23. e1–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Brigham EP, Kolahdooz F, Hansel N, Breysse PN, Davis M, Sharma S, et al. Association between Western diet pattern and adult asthma: a focused review. Ann Allergy Asthma Immunol. 2015;114(4):273–80.

    Article  PubMed  Google Scholar 

  113. Barros R, Moreira A, Fonseca J, de Oliveira JF, Delgado L, Castel-Branco MG, et al. Adherence to the Mediterranean diet and fresh fruit intake are associated with improved asthma control. Allergy. 2008;63(7):917–23.

    Article  PubMed  CAS  Google Scholar 

  114. Lv N, Xiao L, Ma J. Dietary pattern and asthma: a systematic review and meta-analysis. J Asthma Allergy. 2014;7:105–21.

    PubMed  PubMed Central  Google Scholar 

  115. Nurmatov U, Devereux G, Sheikh A. Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol. 2011;127(3):724–33. e1–30

    Article  PubMed  Google Scholar 

  116. Garcia-Marcos L, Castro-Rodriguez JA, Weinmayr G, Panagiotakos DB, Priftis KN, Nagel G. Influence of Mediterranean diet on asthma in children: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2013;24(4):330–8.

    Article  PubMed  CAS  Google Scholar 

  117. Wickens K, Barry D, Friezema A, Rhodius R, Bone N, Purdie G, et al. Fast foods—are they a risk factor for asthma? Allergy. 2005;60(12):1537–41.

    Article  PubMed  CAS  Google Scholar 

  118. Patel S, Custovic A, Smith JA, Simpson A, Kerry G, Murray CS. Cross-sectional association of dietary patterns with asthma and atopic sensitization in childhood - in a cohort study. Pediatr Allergy Immunol. 2014;25(6):565–71.

    PubMed  Google Scholar 

  119. Statovci D, Aguilera M, MacSharry J, Melgar S. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front Immunol. 2017;8:838.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wood LG, Shivappa N, Berthon BS, Gibson PG, Hebert JR. Dietary inflammatory index is related to asthma risk, lung function and systemic inflammation in asthma. Clin Exp Allergy. 2015;45(1):177–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wood LG, Gibson PG. Dietary factors lead to innate immune activation in asthma. Pharmacol Ther. 2009;123(1):37–53.

    Article  PubMed  CAS  Google Scholar 

  122. Romieu I, Barraza-Villarreal A, Escamilla-Nunez C, Texcalac-Sangrador JL, Hernandez-Cadena L, Diaz-Sanchez D, et al. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants. Respir Res. 2009;10:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. •• Spanier AJ, Fausnight T, Camacho TF, Braun JM. The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. Allergy Asthma Proc. 2014;35(6):475–81. One of the most recent studies linking allergic sensitization and exposure to chemicals in personal care products (triclosan and parabens) using data from a large representative pediatric sample from the US general population.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Savage JH, Matsui EC, Wood RA, Keet CA. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. J Allergy Clin Immunol. 2012;130(2):453–60. e7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Lee-Sarwar K, Hauser R, Calafat AM, Ye X, O'Connor GT, Sandel M, et al. Prenatal and early-life triclosan and paraben exposure and allergic outcomes. J Allergy Clin Immunol 2017. https://doi.org/10.1016/j.jaci.2017.09.029.

  126. Just AC, Whyatt RM, Miller RL, Rundle AG, Chen Q, Calafat AM, et al. Children’s urinary phthalate metabolites and fractional exhaled nitric oxide in an urban cohort. Am J Respir Crit Care Med. 2012;186(9):830–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children’s health. Curr Opin Pediatr. 2013;25(2):247–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Soomro MH, Baiz N, Philippat C, Vernet C, Siroux V, Nichole Maesano C, et al. Prenatal exposure to phthalates and the development of eczema phenotypes in male children: results from the EDEN mother-child cohort study. Environ Health Perspect. 2018;126(2):027002.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jahreis S, Trump S, Bauer M, Bauer T, Thurmann L, Feltens R, et al. Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol. 2018;141(2):741–53.

    Article  PubMed  CAS  Google Scholar 

  130. Herberth G, Pierzchalski A, Feltens R, Bauer M, Roder S, Olek S, et al. Prenatal phthalate exposure associates with low regulatory T-cell numbers and atopic dermatitis in early childhood: results from the LINA mother-child study. J Allergy Clin Immunol. 2017;139(4):1376–9. e8

    Article  PubMed  CAS  Google Scholar 

  131. Gascon M, Casas M, Morales E, Valvi D, Ballesteros-Gomez A, Luque N, et al. Prenatal exposure to bisphenol a and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015;135(2):370–8.

    Article  PubMed  CAS  Google Scholar 

  132. Ku HY, Su PH, Wen HJ, Sun HL, Wang CJ, Chen HY, et al. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a Taiwanese birth cohort. PLoS One. 2015;10(4):e0123309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Stelmach I, Majak P, Jerzynska J, Podlecka D, Stelmach W, Polanska K, et al. The effect of prenatal exposure to phthalates on food allergy and early eczema in inner-city children. Allergy Asthma Proc. 2015;36(4):72–8.

    Article  PubMed  Google Scholar 

  134. Just AC, Whyatt RM, Perzanowski MS, Calafat AM, Perera FP, Goldstein IF, et al. Prenatal exposure to butylbenzyl phthalate and early eczema in an urban cohort. Environ Health Perspect. 2012;120(10):1475–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Vernet C, Pin I, Giorgis-Allemand L, Philippat C, Benmerad M, Quentin J, et al. In utero exposure to select phenols and phthalates and respiratory health in five-year-old boys: a prospective study. Environ Health Perspect. 2017;125(9):097006.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang IJ, Lin CC, Lin YJ, Hsieh WS, Chen PC. Early life phthalate exposure and atopic disorders in children: a prospective birth cohort study. Environ Int. 2014;62:48–54.

    Article  PubMed  CAS  Google Scholar 

  137. •• Robinson L, Miller R. The impact of bisphenol A and phthalates on allergy, asthma, and immune function: a review of latest findings. Curr Environ Health Rep. 2015;2(4):379–87. One of the most recent reviews on the role of chemicals in consumer products (BPA and phthalates) on allergy, asthma, and immune function which also includes potential mechanisms of action.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kwak ES, Just A, Whyatt R, Miller RL. Phthalates, pesticides, and bisphenol-A exposure and the development of nonoccupational asthma and allergies: how valid are the links? Open Allergy J. 2009;2:45–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Kocbach Bolling A, Holme JA, Bornehag CG, Nygaard UC, Bertelsen RJ, Nanberg E, et al. Pulmonary phthalate exposure and asthma—is PPAR a plausible mechanistic link? EXCLI J. 2013;12:733–59.

    PubMed  PubMed Central  Google Scholar 

  140. Jepsen KF, Abildtrup A, Larsen ST. Monophthalates promote IL-6 and IL-8 production in the human epithelial cell line A549. Toxicol in Vitro. 2004;18(3):265–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JL and PF were supported by the National Institute on Minority Health and Health Disparities (NIMHD) and the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH) [Award No. P50 MD010428]; the U.S. Environmental Protection Agency (EPA) [Award No. RD-836156]; and the NIEHS/NIH [Award No. R01 ES027816]. KB was supported by the NIEHS/NIH (T32 ES014562). NH was supported by the NIMHD and NIEHS (NIH) [Award No. P50 MD010431 and P50 ES018176]; the U.S. EPA [Award No. 83615001 and No. 83615201]; and the NIEHS/NIH [Award No. R01 ES022607 and R01 ES023500]. LQA was supported by a National Heart Lung and Blood Institute (NHLBI) Career Development Award (K01 HL138124).

This manuscript has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan I. Levy.

Ethics declarations

Conflict of Interest

Jonathan I. Levy reports grants from National Institute on Minority Health and Health Disparities, grants from National Institute of Environmental Health Sciences, and grants from US Environmental Protection Agency, during the conduct of the study.

Lesliam Quirós-Alcalá reports grants from National Institutes of Health, during the conduct of the study.

M. Patricia Fabian reports grants from National Institutes of Health and grants from Environmental Protection Agency, during the conduct of the study.

Komal Basra reports grants from National Institutes of Health, during the conduct of the study.

Nadia N. Hansel reports grants from National Institute on Minority Health and Health Disparities, grants from National Institute of Environmental Health Sciences, and grants from US Environmental Protection Agency, during the conduct of the study; grants and personal fees from AstraZeneca, grants and personal fees from GSK, grants from Boehringer Ingelheim, grants from National Institutes of Health, and grants from COPD Foundation, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Environmental Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, J.I., Quirós-Alcalá, L., Fabian, M.P. et al. Established and Emerging Environmental Contributors to Disparities in Asthma and Chronic Obstructive Pulmonary Disease. Curr Epidemiol Rep 5, 114–124 (2018). https://doi.org/10.1007/s40471-018-0149-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-018-0149-9

Keywords

Navigation