Skip to main content
Log in

Evaluation and analysis of cutting speed, wire wear ratio, and dimensional deviation of wire electric discharge machining of super alloy Udimet-L605 using support vector machine and grey relational analysis

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

The current study investigates the behavior of wire electric discharge machining (WEDM) of the super alloy Udimet-L605 by employing sophisticated machine learning approaches. The experimental work was designed on the basis of the Taguchi orthogonal L27 array, considering six explanatory variables and evaluating their influences on the cutting speed, wire wear ratio (WWR), and dimensional deviation (DD). A support vector machine (SVM) algorithm using a normalized poly-kernel and a radial-basis flow kernel is recommended for modeling the wire electric discharge machining process. The grey relational analysis (GRA) approach was utilized to obtain the optimal combination of process variables simultaneously, providing the desirable outcome for the cutting speed, WWR, and DD. Scanning electron microscope and energy dispersive X-ray analyses of the samples were performed for the confirmation of the results. An SVM based on the radial-basis kernel model dominated the normalized poly-kernel model. The optimal combination of process variables for a mutually desirable outcome for the cutting speed, WWR, and DD was determined as T on1, T off2, I P1, WT3, SV1, and WF3. The pulse-on time is the significant variable influencing the cutting speed, WWR, and DD. The largest percentage of copper (8.66%) was observed at the highest cutting speed setting of the machine compared to 7.05% of copper at the low cutting speed setting of the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Wolf JS, Sandrock GD (1968) Some observations concerning the oxidation of the cobalt-base superalloy L-605 (HS-25). NASA TN D-4715, 1-37, Id. 20020916024

  2. Hebsur MG, Noebe RD, Revilock DM (2003) Superior ballistic impact resistance achieved by the co-base alloy Haynes 25 (L605). Research and Technology, NASA/TM-211990

  3. Tosun N, Cogun C (2003) An investigation on wire wears in WEDM. J Mater Process Technol 134(3):273–278

    Article  Google Scholar 

  4. Puri AB, Bhattacharyya B (2003) An analysis and optimization of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int J Mach Tools Manuf 43(2):151–159

    Article  Google Scholar 

  5. Sarkar S, Mitra S, Bhattacharyya B (2006) Parametric optimization of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int J Adv Manuf Technol 27(5–6):501–508

    Article  Google Scholar 

  6. Ramakrishnan R, Karunamoorthy L (2006) Multi response optimization of wire EDM operations using robust design of experiments. Int J Adv Manuf Technol 29(1–2):105–112

    Article  Google Scholar 

  7. Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9–10):911–925

    Article  Google Scholar 

  8. Gauri SK, Chakraborty S (2009) Optimisation of multiple responses for WEDM processes using weighted principal components. Int J Adv Manuf Technol 40(11–12):1102–1110

    Article  Google Scholar 

  9. Kumar S, Singh R (2010) Investigating surface properties of OHNS die steel after electrical discharge machining with manganese powder mixed in the dielectric. Int J Adv Manuf Technol 50(5–8):625–633

    Article  Google Scholar 

  10. Kumar K, Agarwal S (2012) Multi-objective parametric optimization on machining with wire electric discharge machining. Int J Adv Manuf Technol 62(5–8):617–633

    Article  Google Scholar 

  11. Azhiri RB, Teimouri R, Baboly MG et al (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71(1–4):279–295

    Article  Google Scholar 

  12. Rao TB, Krishna AG (2013) Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiCp MMC. Adv Manuf 1(3):265–275

    Article  Google Scholar 

  13. Kosaraju S, Anne VG (2013) Optimal machining conditions for turning Ti-6Al-4V using response surface methodology. Adv Manuf 1(4):329–339

    Article  Google Scholar 

  14. Das AK, Saha P (2013) Machining of circular micro holes by electrochemical micro-machining process. Adv Manuf 1(4):314–319

    Article  Google Scholar 

  15. Khan ZA, Siddiquee AN, Khan NZ et al (2014) Multi response optimization of wire electrical discharge machining process parameters using Taguchi based grey relational analysis. Procedia Mater Sci 6:1683–1695

    Article  Google Scholar 

  16. Prasad DVSSSV, Krishna AG (2015) Empirical modeling and optimization of kerf and wire wear ratio in wire electrical discharge machining. Int J Adv Manuf Technol 77(1–4):427–441

    Article  Google Scholar 

  17. Tripathy S, Tripathy DK (2016) Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Int J Eng Sci Technol 19(1):62–70

    Article  Google Scholar 

  18. Nain SS, Garg D, Kumar S (2017) Modeling and optimization of process variables of wire-cut electric discharge machining of super alloy Udimet-L605. Eng Sci Technol Int J 20:247–264

    Article  Google Scholar 

  19. Liu H, Wang X, Tan D et al (2006) Study on traffic information fusion algorithm based on support vector machines. In: Proceeding of the sixth international conference on intelligent systems design and applications, IEEE, vol 6, pp 183–187

  20. Pal M, Singh NK, Tiwari NK (2010) Support vector regression based modelling of pier scour using field data. Eng Appl Artif Intell 24(5):911–916

    Article  Google Scholar 

  21. Lu WC, Ji XB, Li MJ et al (2013) Using support vector machine for materials design. Adv Manuf 1(2):151–159

    Article  Google Scholar 

  22. Laha D, Ren Y, Suganthan PN (2015) Modeling of steel making process with effective machine learning techniques. Expert Syst Appl 42:4687–4696

    Article  Google Scholar 

  23. Zhang L, Jia Z, Wang F et al (2010) A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. Int J Adv Manuf Technol 51:575–586

    Article  Google Scholar 

  24. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  25. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  26. Smola AJ (1996) Regression estimation with support vector learning machines. Dissertation, Technical University of Munich

  27. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  28. Luenberger DG (1984) Linear and nonlinear programming. Addison-Wesley, New Jersey

    MATH  Google Scholar 

  29. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco, p 2

    MATH  Google Scholar 

  30. Roy RK (1990) A primer on Taguchi method. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  31. Ross PJ (1996) Taguchi techniques for quality engineering. McGraw Hill, New York

    Google Scholar 

  32. Deng J (1989) Introduction to grey system. J Grey Syst 1:1–24

    MathSciNet  MATH  Google Scholar 

  33. Deng J (1982) Control problems of grey systems. Syst Control Lett 5:288–294

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somvir Singh Nain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nain, S.S., Garg, D. & Kumar, S. Evaluation and analysis of cutting speed, wire wear ratio, and dimensional deviation of wire electric discharge machining of super alloy Udimet-L605 using support vector machine and grey relational analysis. Adv. Manuf. 6, 225–246 (2018). https://doi.org/10.1007/s40436-017-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-017-0192-7

Keywords

Navigation