Skip to main content
Log in

Laser conditioning and structuring of grinding tools – a review

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

The conditioning of grinding tools is one of the most important factors for achieving an optimal grinding process. It influences the grinding forces and temperatures and, therefore, the achievable material removal rate, dimensional accuracy and the surface integrity of the workpiece. Furthermore, the roundness, profile accuracy and the wear of the grinding tools are strongly influenced by the conditioning process. The conditioning process should be matched to the abrasive type and the bonding of the grinding tool. Laser conditioning is a promising unconventional and non-contact method, which is able to condition all kinds of abrasives and bonding types. The main advantages of this novel method are no tool wear, good repeatability and controllability, high precision and a relatively short process time. Additionally, using this method grinding tools can be micro-structured. This paper reviews the literature on the laser conditioning of grinding tools, covering the associated setups, wheel conditioning and structuring mechanisms, and experimental results. It also discusses the technical barriers that have to be overcome before laser conditioning can be fully integrated into manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Daneshi A, Jandaghi N, Tawakoli T (2014) Effect of dressing on internal cylindrical grinding. Procedia CIRP 14:37–41

    Article  Google Scholar 

  2. Rowe WB (2014) Grinding wheel dressing. In: Rowe WB (ed) Principles of modern grinding technology, 2nd edn. William Andrew, Waltham, pp 63–82

    Chapter  Google Scholar 

  3. Shih AJ (2000) An experimental investigation of rotary diamond truing and dressing of vitreous bond wheels for ceramic grinding. Int J Mach Tools Manuf 40:1755–1774

    Article  Google Scholar 

  4. Wegener K, Hoffmeister HW, Karpuschewski B et al (2011) Conditioning and monitoring of grinding wheels. CIRP Ann Manuf Technol 60:757–777

    Article  Google Scholar 

  5. Linke BS (2007) Wirkmechanismen beim Abrichten keramisch gebundener Schleifscheiben. Shaker, Aachen

    Google Scholar 

  6. Klocke F, Kuchle A (2009) Grinding, honing, lapping. Springer, Berlin

    Google Scholar 

  7. Kitzig H, Tawakoli T, Azarhoushang B (2016) A novel ultrasonic-assisted dressing method of electroplated grinding wheels via stationary diamond dresser. Int J Adv Manuf Technol 86(1):1–8

    Google Scholar 

  8. Azarhoushang B, Rasifard A (2014) Das Abrichten als ein integraler Bestandteil des Schleifprozesses. Diam Bus 49:66–73

    Google Scholar 

  9. Marinescu ID (2007) Handbook of machining with grinding wheels. CRC, Boca Raton

    Google Scholar 

  10. Westkämper E (1995) Grinding assisted by Nd: YAG lasers. CIRP Ann Manuf Technol 44:317–320

    Article  Google Scholar 

  11. Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives. 2nd edn. Industrial Press, New York

    Google Scholar 

  12. Tawakoli T, Rasifard A (2011) Dressing of grinding wheels. In: Jackson JM, Davim PJ (eds) Machining with abrasives. Springer, US, Boston, pp 181–244

    Chapter  Google Scholar 

  13. Zahedi A, Azarhoushang B, Akbari J et al (2016) Optimization and application of laser-dressed cBN grinding wheels. Adv Mater Res 1136:90–96

    Article  Google Scholar 

  14. Schöpf M, Beltrami I, Boccadoro M et al (2001) ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal bonded diamond grinding tools. CIRP Ann Manuf Technol 50:125–128

    Article  Google Scholar 

  15. Wei C, Hu D, Xu K et al (2011) Electrochemical discharge dressing of metal bond micro-grinding tools. Int J Mach Tools Manuf 51:165–168

    Article  Google Scholar 

  16. Pavel R, Pavel M, Marinescu I (2004) Investigation of pre-dressing time for ELID grinding technique. J Mater Process Technol 149:591–596

    Article  Google Scholar 

  17. Rabiey M (2011) Dry grinding with CBN wheels, the effect of structuring. Dissertation, Universität Stuttgart

  18. Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites: unterbrochenes Schleifen von keramischen Faserverbundwerkstoffen. Dissertation, Stuttgart University, Shaker Publication

  19. Walter C, Komischke T, Kuster F et al (2014) Laser-structured grinding tools—generation of prototype patterns and performance evaluation. J Mater Process Technol 214:951–961

    Article  Google Scholar 

  20. Tawakoli T (2014) Moderne schleiftechnologie und feinstbearbeitung 2014: neue entwicklungen und trends aus forschung und praxis. In: The seminar of moderne schleiftechnologie und feinstbearbeitung. Stuttgart, Volkan

  21. Zahedi A, Azarhoushang B (2016) Strukturieren und profilieren mittels laser: moderne schleiftechnologie und feinstbearbeitung. In: The seminar of neue entwicklungen und trends aus forschung und praxis. Volkan

  22. Tawakoli T, Rabiey M (2008) An innovative concept and its effects on wheel surface topography in dry grinding by resin and vitrified bond CBN wheel. Mach Sci Tech 12:514–528

    Article  Google Scholar 

  23. Tawakoli T, Heisel U, Lee DH et al (2012) An experimental investigation on the characteristics of cylindrical plunge dry grinding with structured cBN wheels. Procedia CIRP 1:399–403

    Article  Google Scholar 

  24. Nakayama K, Takagi J, Abe T (1977) Grinding wheel with helical grooves—an attempt to improve the grinding performance. CIRP Ann Manuf Technol 26:133–138

    Google Scholar 

  25. Azarhoushang B (2014) Das abrichten als integraler bestandteil des schleifprozesses: unkonventionelle Abrichtprozesse. Diam Bus 50:82–89

    Google Scholar 

  26. Kong MC, Miron CB, Axinte DA et al (2012) On the relationship between the dynamics of the power density and workpiece surface texture in pulsed laser ablation. CIRP Ann Manuf Technol 61:203–206

    Article  Google Scholar 

  27. Yang J, Sun S, Brandt M et al (2010) Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J Mater Process Technol 210:2215–2222

    Article  Google Scholar 

  28. Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O et al (2015) Laser ablation of titanium alloy under a thin and flowing water layer. Int J Mach Tools Manuf 89:14–28

    Article  Google Scholar 

  29. Ahn DG, Byun KW (2009) Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd: YAG laser. Trans Nonferrous Metals Soc China 19:s32–s39

    Article  Google Scholar 

  30. Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46:1879–1891

    Article  Google Scholar 

  31. Fabis PM (1996) Laser machining of CVD diamond: chemical and structural alteration effects. Surf Coat Technol 82:320–325

    Article  Google Scholar 

  32. Butler-Smith PW, Axinte DA, Daine M (2011) Ordered diamond micro-arrays for ultra-precision grinding—an evaluation in Ti-6Al-4V. Int J Mach Tools Manuf 51:54–66

    Article  Google Scholar 

  33. Kovalenko V, Yao J, Zhang Q et al (2013) Laser milling of the intractable materials. Procedia CIRP 6:504–509

    Article  Google Scholar 

  34. Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—a review. J Eur Ceram Soc 29:969–993

    Article  Google Scholar 

  35. Dhupal D, Doloi B, Bhattacharyya B (2008) Pulsed Nd: YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3). Int J Mach Tools Manuf 48:236–248

    Article  Google Scholar 

  36. Fortunato A, Guerrini G, Melkote SN et al (2015) A laser assisted hybrid process chain for high removal rate machining of sintered silicon nitride. CIRP Ann Manuf Technol 64:189–192

    Article  Google Scholar 

  37. Kang DW, Lee CM (2014) A study on the development of the laser-assisted milling process and a related constitutive equation for silicon nitride. CIRP Ann Manuf Technol 63:109–112

    Article  Google Scholar 

  38. Zahedi A, Tawakoli T, Akbari J et al (2014) Conditioning of vitrified bond CBN grinding wheels using a picosecond laser. Adv Mater Res 1017:573–579

    Article  Google Scholar 

  39. Gadag S (2011) Studying the mechanism of micromachining by short pulsed laser. Southern Methodist University, Dallas

    Google Scholar 

  40. Giridhar MS, Seong K, Schuelzgen A et al (2004) Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices. Appl Opt 43:4584–4589

    Article  Google Scholar 

  41. Varel H, Ashkenasi D, Rosenfeld A et al (1997) Micromachining of quartz with ultrashort laser pulses. Appl Phys A 65:367–373

    Article  Google Scholar 

  42. Zahedi A, Tawakoli T, Azarhoushang B et al (2014) Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces. Int J Adv Manuf Technol 76:1479–1491

    Article  Google Scholar 

  43. Chen G, Deng H, Zhou X et al (2015) Online tangential laser profiling of coarse-grained bronze-bonded diamond wheels. Int J Adv Manuf Technol 79(9):1477–1482

    Article  Google Scholar 

  44. Wang XY, Wu YB, Wang J et al (2005) Absorbed energy in laser truing of a small vitrified CBN grinding wheel. J Mater Process Technol 164–165:1128–1133

    Article  Google Scholar 

  45. Ramesh BN, Radhakrishnan V, Murti YVGS (1989) Investigations on laser dressing of grinding wheels—Part I: preliminary study. J Eng Ind 111:244

    Article  Google Scholar 

  46. Ramesh BN, Radhakrishnan V (1989) Investigations on laser dressing of grinding wheels—Part II: grinding performance of a laser dressed aluminum oxide wheel. J Eng Ind 111:253

    Article  Google Scholar 

  47. Ramesh BN, Radhakrishnan V (1995) Influence of dressing feed on the performance of laser dressed Al2O3 wheel in wet grinding. Int J Mach Tools Manuf 35:661–671

    Article  Google Scholar 

  48. Xie XZ, Chen GY, Li LJ (2004) Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser. Opt Laser Technol 36:409–419

    Article  Google Scholar 

  49. Hosokawa A, Ueda T, Yunoki T (2006) Laser dressing of metal bonded diamond wheel. CIRP Ann Manuf Technol 55:329–332

    Article  Google Scholar 

  50. Khangar AA, Kenik EA, Dahotre NB (2005) Microstructure and microtexture in laser-dressed alumina grinding wheel material. Ceram Int 31:621–629

    Article  Google Scholar 

  51. Chen G, Mei L, Zhang B et al (2010) Experiment and numerical simulation study on laser truing and dressing of bronze-bonded diamond wheel. Opt Lasers Eng 48:295–304

    Article  Google Scholar 

  52. Timmer JH (2001) Laserkonditionieren von CBN- und Diamantschleifscheiben. Dissertation, Braunschweig University, Vulkan-Verl., Essen

  53. Kang RK, Yuan JT, Zhang YP et al (2001) Truing of diamond wheels by laser. KEM 202–203:137–142

    Article  Google Scholar 

  54. Chen M, Sun F, Lee Y et al (2003) Laser-assisted grinding wheel dressing (II)—experimental researches. J Mater Sci Technol 19:167–168

    Google Scholar 

  55. Chen X, Feng ZJ, Pashby IR (2004) A study on laser cleaning of Al2O3 grinding wheels. KEM 257–258:359–364

    Article  Google Scholar 

  56. Jackson MJ, Robinson GM, Chen X (2006) Laser surface preparation of vitrified grinding wheels. J Mater Eng Perform 15(2):247–250

    Article  Google Scholar 

  57. Dold C, Transchel R, Rabiey M et al (2011) A study on laser touch dressing of electroplated diamond wheels using pulsed picosecond laser sources. CIRP Ann Manuf Technol 60:363–366

    Article  Google Scholar 

  58. Khangar A, Dahotre NB, Jackson MJ et al (2006) Laser dressing of alumina grinding wheels. J Mater Eng Perform 15(2):178–181

    Article  Google Scholar 

  59. Rabiey M, Walter C, Kuster F et al (2012) Dressing of hybrid bond CBN wheels using short-pulse fiber laser. SV-JME 58:462–469

    Article  Google Scholar 

  60. Walter C, Rabiey M, Warhanek M et al (2012) Dressing and truing of hybrid bonded CBN grinding tools using a short-pulsed fibre laser. CIRP Ann Manuf Technol 61:279–282

    Article  Google Scholar 

  61. Khangar A, Dahotre NB (2005) Morphological modification in laser-dressed alumina grinding wheel material for microscale grinding. J Mater Process Technol 170:1–10

    Article  Google Scholar 

  62. von Witzendorff P, Stompe M, Moalem A et al (2014) Dicing of hard and brittle materials with on-machine laser-dressed metal-bonded diamond blades. Precis Eng 38:162–167

    Article  Google Scholar 

  63. Guo B, Zhao Q, Fang X (2014) Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels. J Mater Process Technol 214:1045–1051

    Article  Google Scholar 

  64. Walter C, Komischke T, Weingärtner E et al (2014) Structuring of CBN grinding tools by ultrashort pulse laser ablation. Procedia CIRP 14:31–36

    Article  Google Scholar 

  65. Stutz GE, Marshall GF (2012) Handbook of optical and laser scanning, 2nd edn. CRC, Boca Raton

    Google Scholar 

  66. Azarhoushang B, Zahedi A (2016) Laserabrichten von superabrasiven Schleifwerkzeugen: moderne schleiftechnologie und feinstbearbeitung. In: The Seminar of Neue Entwicklungen und Trends aus Forschung und Praxis, Volkan

  67. Jackson MJ, Khangar A, Chen X et al (2007) Laser cleaning and dressing of vitrified grinding wheels. J Mater Process Technol 185:17–23

    Article  Google Scholar 

  68. Yung KC, Chen GY, Li LJ (2003) The laser dressing of resin-bonded CBN wheels by a Q-switched Nd:YAG laser. Int J Adv Manuf Technol 22(7):541–546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Azarhoushang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarhoushang, B., Zahedi, A. Laser conditioning and structuring of grinding tools – a review. Adv. Manuf. 5, 35–49 (2017). https://doi.org/10.1007/s40436-016-0167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-016-0167-0

Keywords

Navigation