Skip to main content
Log in

Study of the thermal influence on the dynamic characteristics of the motorized spindle system

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

The severe internal heat generation of the motorized spindle system causes uneven temperature distribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motorized spindle by finite element method (FEM), the thermal deformations of the spindle system are calculated by the thermal structure coupling simulation, and the thermal deformations of the rotor and the bearing units are extracted to analyze the bearing stiffness changes so that the modal characteristics of the rotor can be simulated in different thermal state conditions. And then the rotor thermal deformation experiment and the modal experiment of spindle by exciting with hammer are performed. The result shows that the thermal state of the motorized spindle system has a significant influence on the natural frequency of the rotor, which can be carefully treated when a spindle system is designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Krulewich DA (1998) Temperature integration model and measurement point selection for thermally induced machine tool errors. Mechatronics 8(4):395–412

    Article  Google Scholar 

  2. Meng J, Chen XA, Chen F (2009) Experimental modality analysis of high speed motorized spindle. J Mach Des 26(6):70–72

    MathSciNet  Google Scholar 

  3. Cai LG, Ma SM, Zhao YS et al (2012) Finite element modeling and modal analysis of heavy-duty mechanical spindle under multiple constraints. J Mech Eng 48(3):165–173

    Article  Google Scholar 

  4. Kumar UV, Schmitz TL (2012) Spindle dynamics identification for receptance coupling substructure analysis. Precis Eng 36(3):435–443

    Article  Google Scholar 

  5. Jin MG (2009) System design and analysis of dynamic and static characteristics of high-speed motorized spindle. Dissertation, Jilin University, Jilin

    Google Scholar 

  6. Xu C, Jiang S (2015) Dynamic analysis of a motorized spindle with externally pressurized air bearings. J Vib Acoust 137(4):041001

    Article  Google Scholar 

  7. Chen D, Bonis M, Zhang F et al (2011) Thermal error of a hydrostatic spindle. Precis Eng 35(3):512–520

    Article  Google Scholar 

  8. Liu T, Gao W, Tian Y et al (2014) A differentiated multi-loops bath recirculation system for precision machine tools. Appl Therm Eng 76:54–63

    Article  Google Scholar 

  9. Ma C, Yang J, Zhao L et al (2015) Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Appl Therm Eng 86:251–268

    Article  Google Scholar 

  10. Chang CF, Chen JJ (2009) Thermal growth control techniques for motorized spindles. Mechatronics 19(8):1313–1320

    Article  Google Scholar 

  11. Anandan KP, Ozdoganlar OB (2013) Analysis of error motions of ultra-high-speed (UHS) micromachining spindles. Int J Mach Tools Manuf 70(7):1–14

    Article  Google Scholar 

  12. Zahedi A, Movahhedy MR (2012) Thermo-mechanical modeling of high speed spindles. ScientiaIranica 19(2):282–293

    Google Scholar 

  13. Li H, Shin YC (2004) Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1: model development. J Manuf Sci Eng 126(1):148–158

    Article  Google Scholar 

  14. Holkup T, Cao H, Kolář P et al (2010) Thermo-mechanical model of spindles. CIRP Ann - Manuf Technol 59(1):365–368

    Article  Google Scholar 

  15. Palmgren A (1959) Ball and roller bearing engineering. Skf Industries Inc, Philadelphia

    Google Scholar 

  16. Harris TA (2006) Rolling bearing analysis. Wiley, Hoboken

    Google Scholar 

  17. Gieras JF, Gieras JF (2002) Permanent magnet motor technology. IEEEXPLORE.IEEE.ORG, 2, 1181–1187

  18. Yang SM, Tao WQ (2006) Heat transfer. Higher Education Press, Beijing

    Google Scholar 

  19. Uhlmann E, Hu J (2012) Thermal modelling of a high speed motor spindle. Procedia Cirp 1(9):313–318

    Article  Google Scholar 

  20. Chen YN, Chen ZH (1989) Fundamental theory of machine tool thermal character. China Machine Press, Beijing

    Google Scholar 

  21. Nye JF (1957) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford

    MATH  Google Scholar 

  22. Dan S (1993) Machine tool rolling bearing application manual. China Machine Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SS., Shen, Y. & He, Q. Study of the thermal influence on the dynamic characteristics of the motorized spindle system. Adv. Manuf. 4, 355–362 (2016). https://doi.org/10.1007/s40436-016-0158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-016-0158-1

Keywords

Navigation