Skip to main content

Advertisement

Log in

Alcohol and the Human Brain: a Systematic Review of Recent Functional Neuroimaging and Imaging Genetics Findings

  • Alcohol (RF Leeman, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

New information from neuroimaging studies on alcohol use disorders (AUDs) is available which necessitates an update on our review on alcohol and the human brain published in 2010. Here, we provide an overview on functional Magnetic Resonance Imaging (fMRI) and imaging genetics studies published in the last 5 years. Our systematic search in PubMed yielded a total of 70 fMRI studies out of which 57 were finally considered. We have summarized the study results based on their main research focus as follows: studies on neural correlates of reward processing (alcohol cues (N = 17), non-drug cues (N = 3)), decision making (N = 2), attention (N = 5), impulsivity and cognitive control (N = 1), pharmacological effects/treatment responses (N = 13) and relapse prediction (N = 6). Neuroimaging genetics studies have mainly considered the impact of various functional polymorphisms on alcohol cue processing (N = 10). These results indicate that recent research on AUDs has concentrated on reward processing (mainly alcohol cue reactivity). Possible directions for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Google Scholar 

  2. Hasin DS, Stinson FS, Ogburn E, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry. 2007;64(7):830–42.

    Article  PubMed  Google Scholar 

  3. Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. 2009;373(9682):2223–33.

    Article  PubMed  Google Scholar 

  4. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18(1):121–33.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Vollstädt-Klein S, Loeber S, Richter A, Kirsch M, Bach P, von der Goltz C, et al. Validating incentive salience with functional magnetic resonance imaging: association between mesolimbic cue reactivity and attentional bias in alcohol-dependent patients. Addict Biol. 2012;17(4):807–16.

    Article  PubMed  Google Scholar 

  6. Wiers CE, Stelzel C, Gladwin TE, Park SQ, Pawelczack S, Gawron CK, et al. Effects of cognitive bias modification training on neural alcohol cue reactivity in alcohol dependence. Am J Psychiatry. 2015;172(4):335–43.

    Article  PubMed  Google Scholar 

  7. Arcurio LR, Finn PR, James TW. Neural mechanisms of high-risk decisions-to-drink in alcohol-dependent women. Addict Biol. 2015;20(2):390–406. This study assessed whether AUD is more compatible with an over-sensitive reward system, a deficit in control systems or a combination of both to produce the high risk-taking behaviour. A novel ecological task was developed to assess high- and low-risk decisions to drink alcohol, have sex, eat food, and buy items in alcohol dependent women and controls. Alcohol-dependent women showed increased simultaneous activation of reward networks, cognitive control networks and default networks suggesting that over-endorsement of high-risk drinking decisions by alcohol-dependent women may be due to a problem with switching between different neural networks.

    Article  CAS  PubMed  Google Scholar 

  8. Luijten M, Machielsen MW, Veltman DJ, Hester R, de Haan L, Franken IH. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioral addictions. J Psychiatry Neurosci. 2014;39(3):149–69.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Beck A, Wüstenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka MN, et al. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry. 2012;69(8):842–52.

    Article  PubMed  Google Scholar 

  10. Vollstädt-Klein S, Loeber S, Kirsch M, Bach P, Richter A, Bühler M, et al. Effects of cue-exposure treatment on neural cue reactivity in alcohol dependence: a randomized trial. Biol Psychiatry. 2011;69(11):1060–6.

    Article  PubMed  Google Scholar 

  11. Sweitzer MM, Donny EC, Hariri AR. Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction. Drug Alcohol Depend. 2012;123 Suppl 1:S59–71.

    Article  CAS  PubMed  Google Scholar 

  12. Hariri AR, Weinberger DR. Imaging genomics. Br Med Bull. 2003;65:259–70.

    Article  CAS  PubMed  Google Scholar 

  13. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 2006;7:818–27.

    Article  CAS  PubMed  Google Scholar 

  14. Bühler M, Mann K. Alcohol and the human brain: a systematic review of different neuroimaging methods. Alcohol Clin Exp Res. 2011;35(10):1771–93. The article provides a comprehensive and systematic review on the link between alcohol abuse and dependence and structural and functional changes in the human brain. Different brain imaging techniques are summarized and alcohol-related research findings obtained with these methods are provided. The current review provides a five year follow-up of the previous review on alcohol and the human brain.

    Article  PubMed  Google Scholar 

  15. Vollstädt-Klein S, Wichert S, Rabinstein J, Bühler M, Klein O, Ende G, et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction. 2010;105(10):1741–9.

    Article  PubMed  Google Scholar 

  16. Courtney KE, Ghahremani DG, London ED, Ray LA. The association between cue-reactivity in the precuneus and level of dependence on nicotine and alcohol. Drug Alcohol Depend. 2014;141:21–6.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Schacht JP, Anton RF, Randall PK, Li X, Henderson S, Myrick H. Stability of fMRI striatal response to alcohol cues: a hierarchical linear modeling approach. Neuroimage. 2011;56(1):61–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Feldstein Ewing SW, Filbey FM, Sabbineni A, Chandler LD, Hutchison KE. How psychosocial alcohol interventions work: a preliminary look at what FMRI can tell us. Alcohol Clin Exp Res. 2011;35(4):643–51.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ray LA, Courtney KE, Ghahremani DG, Miotto K, Brody A, London ED. Varenicline, naltrexone, and their combination for heavy-drinking smokers: preliminary neuroimaging findings. Am J Drug Alcohol Abuse. 2015;41(1):35–44.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Seo D, Jia Z, Lacadie CM, Tsou KA, Bergquist K, Sinha R. Sex differences in neural responses to stress and alcohol context cues. Hum Brain Mapp. 2011;32(11):1998–2013.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Langosch JM, Spiegelhalder K, Jahnke K, Feige B, Regen W, Kiemen A, et al. The impact of acamprosate on cue reactivity in alcohol dependent individuals: a functional magnetic resonance imaging study. J Clin Psychopharmacol. 2012;32(5):661–5.

    Article  PubMed  Google Scholar 

  22. Bach P, Vollstädt-Klein S, Kirsch M, Hoffmann S, Jorde A, Frank J, et al. Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: a functional imaging study in alcohol dependent subjects. Eur Neuropsychopharmacol. 2015;25(8):1128–35.

    Article  CAS  PubMed  Google Scholar 

  23. Claus ED, Ewing SW, Filbey FM, Sabbineni A, Hutchison KE. Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology. 2011;36(10):2086–96.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lukas SE, Lowen SB, Lindsey KP, Conn N, Tartarini W, Rodolico J, et al. Extended-release naltrexone (XR-NTX) attenuates brain responses to alcohol cues in alcohol-dependent volunteers: a bold FMRI study. Neuroimage. 2013;78:176–85.

    Article  CAS  PubMed  Google Scholar 

  25. Schacht JP, Anton RF, Randall PK, Li X, Henderson S, Myrick H. Effects of a GABA-ergic medication combination and initial alcohol withdrawal severity on cue-elicited brain activation among treatment-seeking alcoholics. Psychopharmacology (Berl). 2013;227(4):627–37.

    Article  CAS  Google Scholar 

  26. Oberlin BG, Dzemidzic M, Bragulat V, Lehigh CA, Talavage T, O’Connor SJ, et al. Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers. Neuroimage. 2012;60(1):644–52.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gilman JM, Ramchandani VA, Crouss T, Hommer DW. Subjective and neural responses to intravenous alcohol in young adults with light and heavy drinking patterns. Neuropsychopharmacology. 2012;37(2):467–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mann K, Vollstädt-Klein S, Reinhard I, Leménager T, Fauth-Bühler M, Hermann D, et al. Predicting naltrexone response in alcohol-dependent patients: the contribution of functional magnetic resonance imaging. Alcohol Clin Exp Res. 2014;38(11):2754–62.

    Article  CAS  PubMed  Google Scholar 

  29. Jorde A, Bach P, Witt SH, Becker K, Reinhard I, Vollstädt-Klein S, et al. Genetic variation in the atrial natriuretic peptide transcription factor GATA4 modulates amygdala responsiveness in alcohol dependence. Biol Psychiatry. 2014;75(10):790–7.

    Article  CAS  PubMed  Google Scholar 

  30. Dager AD, Anderson BM, Stevens MC, Pulido C, Rosen R, Jiantonio-Kelly RE, et al. Influence of alcohol use and family history of alcoholism on neural response to alcohol cues in college drinkers. Alcohol Clin Exp Res. 2013;37 Suppl 1:E161–71.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Schacht JP, Anton RF, Randall PK, Li X, Henderson S, Myrick H. Varenicline effects on drinking, craving and neural reward processing among non-treatment-seeking alcohol-dependent individuals. Psychopharmacology (Berlin). 2014;231(18):3799–807.

    Article  CAS  Google Scholar 

  32. Lee E, Ku J, Jung YC, Lee H, An SK, Kim KR, et al. Neural evidence for emotional involvement in pathological alcohol craving. Alcohol Alcohol. 2013;48(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  33. Wilcox CE, Claus ED, Blaine SK, Morgan M, Hutchison KE. Genetic variation in the alpha synuclein gene (SNCA) is associated with BOLD response to alcohol cues. J Stud Alcohol Drugs. 2013;74(2):233–44.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Cyders MA, Dzemidzic M, Eiler WJ, Coskunpinar A, Karyadi K, Kareken DA. Negative urgency and ventromedial prefrontal cortex responses to alcohol cues: FMRI evidence of emotion-based impulsivity. Alcohol Clin Exp Res. 2014;38(2):409–17.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Liu J, Claus ED, Calhoun VD, Hutchison KE. Brain regions affected by impaired control modulate responses to alcohol and smoking cues. J Stud Alcohol Drugs. 2014;75(5):808–16.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kiefer F, Kirsch M, Bach P, Hoffmann S, Reinhard I, Jorde A, et al. Effects of D-cycloserine on extinction of mesolimbic cue reactivity in alcoholism: a randomized placebo-controlled trial. Psychopharmacology (Berlin). 2015;232(13):2353–62.

    Article  CAS  Google Scholar 

  37. Kim SM, Han DH, Min KJ, Kim BN, Cheong JH. Brain activation in response to craving- and aversion-inducing cues related to alcohol in patients with alcohol dependence. Drug Alcohol Depend. 2014;141:124–31.

    Article  PubMed  Google Scholar 

  38. Kwako LE, George DT, Schwandt ML, Spagnolo PA, Momenan R, Hommer DW, et al. The neurokinin-1 receptor antagonist aprepitant in co-morbid alcohol dependence and posttraumatic stress disorder: a human experimental study. Psychopharmacology (Berlin). 2015;232(1):295–304.

    Article  CAS  Google Scholar 

  39. Bach P, Kirsch M, Hoffmann S, Jorde A, Mann K, Frank J, et al. The effects of single nucleotide polymorphisms in glutamatergic neurotransmission genes on neural response to alcohol cues and craving. Addict Biol. 2015;20(6):1022–32. doi:10.1111/adb.12291.

  40. Kwako LE, Spagnolo PA, Schwandt ML, Thorsell A, George DT, Momenan R, et al. The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: a randomized controlled experimental medicine study. Neuropsychopharmacology. 2015;40(5):1053–63.

    Article  CAS  PubMed  Google Scholar 

  41. Holla B, Viswanath B, Agarwal SM, Kalmady SV, Maroky AS, Jayarajan D, et al. Visual Image-Induced Craving for Ethanol (VICE): development, validation, and a pilot fMRI Study. Indian J Psychol Med. 2014;36(2):164–9.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kirsch M, Gruber I, Ruf M, Kiefer F, Kirsch P. Real-time functional magnetic resonance imaging neurofeedback can reduce striatal cue-reactivity to alcohol stimuli. Addict Biol. 2015. doi:10.1111/adb.12278.

  43. Blaine S, Claus E, Harlaar N, Hutchison K. TACR1 genotypes predict fMRI response to alcohol cues and level of alcohol dependence. Alcohol Clin Exp Res. 2013;37 Suppl 1:E125–30.

    Article  CAS  PubMed  Google Scholar 

  44. Sjoerds Z, van den Brink W, Beekman AT, Penninx BW, Veltman DJ. Cue reactivity is associated with duration and severity of alcohol dependence: an FMRI study. PLoS One. 2014;9(1):e84560.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Krienke UJ, Nikesch F, Spiegelhalder K, Hennig J, Olbrich HM, Langosch JM. Impact of alcohol-related video sequences on functional MRI in abstinent alcoholics. Eur Addict Res. 2014;20(1):33–40.

    Article  PubMed  Google Scholar 

  46. Courtney KE, Ghahremani DG, Ray LA. The effect of alcohol priming on neural markers of alcohol cue-reactivity. Am J Drug Alcohol Abuse. 2015;41(4):300–8.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Alba-Ferrara L, Müller-Oehring EM, Sullivan EV, Pfefferbaum A, Schulte T. Brain responses to emotional salience and reward in alcohol use disorder. Brain Imaging Behav. 2015. doi:10.1007/s11682-015-9374-8.

  48. Camchong J, Stenger A, Fein G. Resting-state synchrony during early alcohol abstinence can predict subsequent relapse. Cereb Cortex. 2013;23(9):2086–99.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kareken DA, Liang T, Wetherill L, Dzemidzic M, Bragulat V, Cox C, et al. A polymorphism in GABRA2 is associated with the medial frontal response to alcohol cues in an fMRI study. Alcohol Clin Exp Res. 2010;34(12):2169–78.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Seo D, Lacadie CM, Tuit K, Hong KI, Constable RT, Sinha R. Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk. JAMA Psychiatry. 2013;70(7):727–39.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ihssen N, Cox WM, Wiggett A, Fadardi JS, Linden DE. Differentiating heavy from light drinkers by neural responses to visual alcohol cues and other motivational stimuli. Cereb Cortex. 2011;21(6):1408–15.

    Article  PubMed  Google Scholar 

  52. Dager AD, Anderson BM, Rosen R, Khadka S, Sawyer B, Jiantonio-Kelly RE, et al. Functional magnetic resonance imaging (fMRI) response to alcohol pictures predicts subsequent transition to heavy drinking in college students. Addiction. 2014;109(4):585–95.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Chen J, Hutchison KE, Calhoun VD, Claus ED, Turner JA, Sui J, et al. CREB-BDNF pathway influences alcohol cue-elicited activation in drinkers. Hum Brain Mapp. 2015;36(8):3007–19.

    Article  PubMed  Google Scholar 

  54. Bjork JM1, Smith AR, Chen G, Hommer DW. Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation, and reward delivery. Hum Brain Mapp. 2012;33(9):2174–88.

  55. Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP, et al. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol. 2015. doi:10.1111/adb.12243.

  56. Romanczuk-Seiferth N, Koehler S, Dreesen C, Wüstenberg T, Heinz A. Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. 2015;20(3):557–69. doi:10.1111/adb.12144.

    Article  PubMed  Google Scholar 

  57. Charlet K, Schlagenhauf F, Richter A, Naundorf K, Dornhof L, Weinfurtner CE, et al. Neural activation during processing of aversive faces predicts treatment outcome in alcoholism. Addict Biol. 2014;19(3):439–51.

    Article  PubMed  Google Scholar 

  58. Gilman JM, Smith AR, Ramchandani VA, Momenan R, Hommer DW. The effect of intravenous alcohol on the neural correlates of risky decision making in healthy social drinkers. Addict Biol. 2012;17(2):465–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wiers CE, Stelzel C, Park SQ, Gawron CK, Ludwig VU, Gutwinski S, et al. Neural correlates of alcohol-approach bias in alcohol addiction: the spirit is willing but the flesh is weak for spirits. Neuropsychopharmacology. 2014;39(3):688–97.

  60. Gladwin TE, Ter Mors-Schulte MH, Ridderinkhof KR, Wiers RW. Medial parietal cortex activation related to attention control involving alcohol cues. Front Psychiatry. 2013;4:174.

  61. Fryer SL, Jorgensen KW, Yetter EJ, Daurignac EC, Watson TD, Shanbhag H, et al. Differential brain response to alcohol cue distractors across stages of alcohol dependence. Biol Psychol. 2013;92(2):282–91.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kreusch F, Goffaux V, Siep N, Houben K, Quertemont E, Wiers RW. Brain activation associated with automatic processing of alcohol-related cues in young heavy drinkers and its modulation by alcohol administration. Alcohol Clin Exp Res. 2015;39(10):1957–66.

    Article  PubMed  Google Scholar 

  63. Schulte T, Müller-Oehring EM, Sullivan EV, Pfefferbaum A. Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men. Biol Psychiatry. 2012;71(3):269–78.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Grüsser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berlin). 2004;175(3):296–302.

    Article  Google Scholar 

  65. Braus DF, Wrase J, Grüsser S, Hermann D, Ruf M, Flor H, et al. Alcohol-associated stimuli activate the ventral striatum in abstinent alcoholics. Neural Transm. 2001;108(7):887–94.

    Article  CAS  Google Scholar 

  66. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8(11):1481–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bühler M, Vollstädt-Klein S, Kobiella A, Budde H, Reed LJ, Braus DF, et al. Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry. 2010;67(8):745–52.

    Article  PubMed  Google Scholar 

  68. Wrase J, Schlagenhauf F, Kienast T, Wüstenberg T, Bermpohl F, Kahnt T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage. 2007;35(2):787–94.

    Article  PubMed  Google Scholar 

  69. Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage. 2000;12(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  70. Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.

    Article  CAS  PubMed  Google Scholar 

  71. Field M, Cox WM. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol Depend. 2008;97(1-2):1–20.

    Article  PubMed  Google Scholar 

  72. Dom G, De Wilde B, Hulstijn W, van den Brink W, Sabbe B. Decision-making deficits in alcohol-dependent patients with and without comorbid personality disorder. Alcohol Clin Exp Res. 2006;30(10):1670–7.

    Article  PubMed  Google Scholar 

  73. Corte CM, Sommers MS. Alcohol and risky behaviors. Annu Rev Nurs Res. 2005;23:327–60.

    PubMed  Google Scholar 

  74. Daruma J, Barnes P. A neurodevelopmental view of impulsivity and its relationship to the superfactors of personality. In: McCown W, Johnson J, Shure M, editors. The impulsive client: theory, research and treatment. Washington DC: American Psychological Association; 1993.

    Google Scholar 

  75. Wiers CE, Ludwig VU, Gladwin TE, Park SQ, Heinz A, Wiers RW, et al. Effects of cognitive bias modification training on neural signatures of alcohol approach tendencies in male alcohol-dependent patients. Addict Biol. 2015;20(5):990–9.

    Article  PubMed  Google Scholar 

  76. Befort K. Interactions of the opioid and cannabinoid systems in reward: insights from knockout studies. Front Pharmacol. 2015;6:6.

    PubMed Central  PubMed  Google Scholar 

  77. Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89(4):1379–412.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Berrettini W. Alcohol addiction and the mu-opioid receptor. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:228–33. doi:10.1016/j.pnpbp.2015.07.011.

  79. Courtney KE, Ray LA. Subjective responses to alcohol in the lab predict neural responses to alcohol cues. J Stud Alcohol Drugs. 2014;75(1):124–3.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Schacht JP, Anton RF, Voronin KE, Randall PK, Li X, Henderson S, et al. Interacting effects of naltrexone and OPRM1 and DAT1 variation on the neural response to alcohol cues. Neuropsychopharmacology. 2013;38(3):414–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, et al. Genome-wide association study of alcohol dependence. Arch Gen Psychiatry. 2009;66(7):773–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Edenberg HJ, Koller DL, Xuei X, Wetherill L, McClintick JN, Almasy L, et al. Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol Clin Exp Res. 2010;34(5):840–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Kiefer F, Witt SH, Frank J, Richter A, Treutlein J, Lemenager T, et al. Involvement of the atrial natriuretic peptide transcription factor GATA4 in alcohol dependence, relapse risk and treatment response to acamprosate. Pharmacogenomics J. 2011;11(5):368–74.

    Article  CAS  PubMed  Google Scholar 

  84. Schumann G, Johann M, Frank J, Preuss U, Dahmen N, Laucht M, et al. Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior. Arch Gen Psychiatry. 2008;65(7):826–38.

    Article  CAS  PubMed  Google Scholar 

  85. Sanchis-Segura C, Borchardt T, Vengeliene V, Zghoul T, Bachteler D, Gass P, et al. Involvement of the AMPA receptor GluR-C subunit in alcohol-seeking behavior and relapse. J Neurosci. 2006;26(4):1231–8.

    Article  CAS  PubMed  Google Scholar 

  86. Burnett EJ, Chandler LJ, Trantham-Davidson H. Glutamatergic plasticity and alcohol dependence-induced alterations in reward, affect and cognition. Prog Neuropsychopharmacol Biol Psychiatry. 2015. 65:309–20. doi:10.1016/j.pnpbp.2015.08.012.

  87. Benarroch EE. Brain-derived neurotrophic factor: regulation, effects, and potential clinical relevance. Neurology. 2015;84(16):1693–704.

    Article  PubMed  Google Scholar 

  88. Ruggeri B, Nymberg C, Vuoksimaa E, Lourdusamy A, Wong CP, Carvalho FM, et al. Association of protein phosphatase PPM1G with alcohol use disorder and brain activity during behavioral control in a genome-wide methylation analysis. Am J Psychiatry. 2015;172(6):543–52.

    Article  PubMed  Google Scholar 

  89. Stacey D, Bilbao A, Maroteaux M, Jia T, Easton AC, Longueville S, et al. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release. Proc Natl Acad Sci U S A. 2012;109(51):21128–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Nees F, Witt SH, Dinu-Biringer R, Lourdusamy A, Tzschoppe J, Vollstädt-Klein S, et al. BDNF Val66Met and reward-related brain function in adolescents: role for early alcohol consumption. Alcohol. 2015;49(2):103–10.

    CAS  PubMed  Google Scholar 

  91. Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, et al. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature. 2014;512(7513):185–9. Based on a large data set of adolescents (n = 692) models of current and future adolescent alcohol misuse are developed that incorporate brain structure and function, individual personality and cognitive differences, environmental factors, life experiences, and candidate genes. By uncovering individual differences in vulnerability factors underlying alcohol misuse, these models help to increase our understanding on the aetiology of alcohol misuse and suggest targets for prevention.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the ‛dark side’ of drug addiction. Nat Neurosci. 2005;8(11):1442–4.

    Article  CAS  PubMed  Google Scholar 

  93. Loth E, Carvalho F, Schumann G. The contribution of imaging genetics to the development of predictive markers for addictions. Trends Cogn Sci. 2011;15(9):436–46

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Fauth-Bühler.

Ethics declarations

Conflict of Interest

Falk Kiefer and Mira Fauth-Bühler declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Support

This project was funded by grants from the Deutsche Forschungsgemeinschaft (DFG), Sonderforschungsbereich (SFB) 636, projects D6 and D7, and from the Bundesministerium für Bildung und Forschung (BMBF), SysMedAlcoholism–eMEDS, grant ID 01ZX1311A and Research Network on Mental Disorders–AERIAL, grant ID 01EE1406C TP1, TP6 und TP7.

Additional information

This article is part of the Topical Collection on Alcohol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauth-Bühler, M., Kiefer, F. Alcohol and the Human Brain: a Systematic Review of Recent Functional Neuroimaging and Imaging Genetics Findings. Curr Addict Rep 3, 109–124 (2016). https://doi.org/10.1007/s40429-016-0082-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-016-0082-2

Keywords

Navigation