Skip to main content

Advertisement

Log in

Advanced approaches to imaging primary breast cancer: an update

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer (BC) is the most common cancer in women. Early detection of BC plays an important role in preventing advanced disease and improving survival. In this article, we aim to describe both advantages and limitations of conventional and new BC-imaging modalities.

Methods

A literature search was performed for the period of January 2013 through October 2018, using search engines such as PubMed, PMC, and Google scholar. Search topics included: “breast cancer”, “breast lesion”, and “breast tumor imaging, diagnosis, and detection”.

Results

A total of 143 papers which primarily addressed imaging efficacy issues are included in the review. Mammography is the oldest and most commonly utilized screening modality for BC. Ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission mammography (PEM), and positron emission tomography/computed tomography (PET/CT) are the other conventional BC-imaging modalities. To overcome certain weaknesses of these modalities, new imaging tools including contrast-enhanced spectral mammography (CSEM), digital breast tomosynthesis (DBT), multiparametric (MP)-MRI, microwave imaging, and PET/MRI have been investigated.

Conclusion

Conventional BC-imaging modalities have both advantages and limitations. When utilized in combination, they are often complementary. For example, a limitation of mammography is low sensitivity in dense breasts. The addition of DBT lessens this limitation by providing three-dimensional (3D) images of the breast that minimizes the effect of overlying breast tissue. Additionally, US added to mammography in dense breasts increases screening sensitivity and has the advantages of accessibility and lack of ionizing radiation. MRI is currently the most sensitive method used for detecting BC. When MRI is not suitable for patients, such as those with prosthesis, dedicated breast CT can be used. Scintimammography is another alternative method, although not commonly performed due to low sensitivity in < 1 cm tumors. Breast-specific gamma imaging (BSGI), on the other hand, can detect breast tumor < 1 cm; however, effective radiation dose is higher than mammography. PEM, with its high resolution, has been developed to image small breast tumors. PET/CT and PET/MRI have also been used to detect BC. Despite complementary roles of conventional imaging techniques, none of them have addressed all issues in BC diagnosis. Research studies developing novel target-specific molecular imaging agents are in progress with hopes to fill gaps in currently available imaging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACR:

American College of Radiology

ACS:

American Cancer Society

ADC:

Apparent diffusion coefficient

Anti-3-18F-FACBC:

Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid

Anti-3-18F-FACBC:

18Fluorine-fluciclovine

Arg-Gly-Asp (RGD):

Arginine–glycine–aspartic acid

BBN:

Bombesin

BC:

Breast cancer

BGO:

Bismuth germanium oxide

BI-RADS:

Breast Imaging Reporting and Data System

BMI:

Body mass index

BPE:

Background parenchymal enhancement

BSGI:

Breast-specific gamma imaging

CE:

Contrast enhanced

CESM:

Contrast-enhanced spectral mammography

CT:

Computed tomography

64Cu:

64Copper

D:

Dimensional

DBT:

Digital breast tomosynthesis

DCE:

Dynamic contrast enhanced

DCIS:

Ductal carcinoma in situ

DM:

Digital mammography

DWI:

Diffusion-weighted imaging

E-[c(RGDfK)]2:

Arginine–glycine–aspartic acid dimer peptide

EDDA:

Ethylenediamine-N,N’-diacetic acid

ER:

Estrogen receptor

18F-FDG:

18Fluorine-2-deoxy-d-glucose

18F-FES:

16α-18Fluorine-fluoroestradiol

18F-FLT:

3′-Deoxy-3′-18fluorine-fluorothymidine

18F-4FMFES:

4-Fluoro-11β-methoxy-16α-18fluorine-fluoroestradiol

FDA:

Food and Drug Administration

FFDM:

Full-field digital mammography

FGT:

Fibroglandular tissue

FN:

False negative

FP:

False positive

GRPR:

Gastrin-releasing peptide receptor

GSO:

Gadolinium oxyorthosilicate

1H-MRS:

Proton MR spectroscopy

HYNIC:

Hydrazinonicotinamide

IAEA:

International Atomic Energy Agency

In:

Indium

i.v.:

Intravenous

KBCT:

Koning Breast CT

L/N:

Lesion to non-lesion ratio

LN:

Lymph node

LYSO:

Lutetium yttrium orthosilicate

LW1:

Lipid line width for methylene resonance

LW2:

Lipid line width for methyl peaks

MAMMI:

MAMmography with Molecular Imaging

MIBI:

Methoxyisobutylisonitrile

MP:

Multiparametric

MRI:

Magnetic resonance imaging

mRNA:

Mesenger RNA

n:

Number

NA:

Not available

NCI:

National Cancer Institute

NCNN:

National Comprehensive Cancer Network

NPV:

Negative predictive value

P:

Phosphorus

PEM:

Positron emission mammography

PET:

Positron emission tomography

PPV:

Positive predictive value

PR:

Progesterone receptor

Pr:LuAG:

Praseodymium-doped lutetium aluminum garnet

Pts:

Patients

PUVmax:

Maximum PEM uptake value

Ref.:

Reference

RGD:

Arginine–glycine–aspartic acid

ROC:

Receiver-operating characteristics

RS-EPI:

Readout-segmented echo-planar imaging

Sens.:

Sensitivity

SNR:

Signal-to-noise ratio

Spe.:

Specificity

SPECT:

Single-photon emission computed tomography

SS-EPI:

Single-shot echo-planar imaging

SSTR:

Somatostatin receptor

SUVmax:

Maximum standardized uptake value

T:

Tesla

T/N:

Tumor to non-tumor

T1-W:

T1 weighted

T2-W:

T2 weighted

tCho:

Total choline peak

99mTc:

99mTechnetium

99mTc-3 Poly-ethylene glycol 4:

99mTechnetium-3P-RGD2

US:

Ultrasonography

USPSTF:

United States Preventive Services Task Force

WB:

Whole body

WI:

Weighted imaging

WF1:

Water fraction 1

References

  1. Fiorica JV (2016) Breast cancer screening, mammography, and other modalities. Clin Obstet Gynecol 59:688–709. https://doi.org/10.1097/GRF.0000000000000246

    Article  PubMed  Google Scholar 

  2. Mainiero MB, Lourenco A, Mahoney MC et al (2013) ACR appropriateness criteria breast cancer screening. J Am Coll Radiol 10:11–14. https://doi.org/10.1016/j.jacr.2012.09.036

    Article  PubMed  Google Scholar 

  3. Lee CS, Moy L, Friedewald SM et al (2018) Harmonizing breast cancer screening recommendations: metrics and accountability. AJR 210:241–245. https://doi.org/10.2214/AJR.17.18704

    Article  PubMed  Google Scholar 

  4. Sorace AG, Harvey S, Syed A, Yankeelov TE (2017) Imaging considerations and interprofessional opportunities in the care of breast cancer patients in the neoadjuvant setting. Semin Oncol Nurs 33:425–439. https://doi.org/10.1016/j.soncn.2017.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Łuczyńska E, Heinze-Paluchowska S, Hendrick E et al (2015) Comparison between breast MRI and contrast-enhanced spectral mammography. Med Sci Monit 21:1358–1367. https://doi.org/10.12659/MSM.893018

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cai SQ, Yan JX, Chen QS et al (2015) Significance and application of digital breast tomosynthesis for the BI-RADS classification of breast cancer. Asian Pac J Cancer Prev 16:4109–4114. https://doi.org/10.7314/APJCP.2015.16.9.4109

    Article  PubMed  Google Scholar 

  7. Poplack S (2017) Breast tomosynthesis: clinical evidence. Radiol Clin North Am 55:475–492. https://doi.org/10.1016/j.rcl.2016.12.010

    Article  PubMed  Google Scholar 

  8. Kim SA, Chang JM, Cho N et al (2015) Characterization of breast lesions: comparison of digital breast tomosynthesis and ultrasonography. Korean J Radiol 16:229–238. https://doi.org/10.3348/kjr.2015.16.2.229

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patterson SK, Roubidoux MA (2014) Update on new technologies in digital mammography. Int J Women’s Health 6:781–788. https://doi.org/10.2147/IJWH.S49332

    Article  Google Scholar 

  10. Mohindra N, Neyaz Z, Agrawal V et al (2018) Impact of addition of digital breast tomosynthesis to digital mammography in lesion characterization in breast cancer patients. Int J Appl Basic Med Res 8:33–37. https://doi.org/10.4103/ijabmr.IJABMR_372_16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hooley RJ, Durand MA, Philpotts LE (2017) Advances in digital breast tomosynthesis. Am J Roentgenol 208:256–266. https://doi.org/10.2214/AJR.16.17127

    Article  Google Scholar 

  12. Friedewald SM (2017) Breast tomosynthesis: practical considerations. Radiol Clin North Am 55:493–502. https://doi.org/10.1016/j.rcl.2016.12.004

    Article  PubMed  Google Scholar 

  13. Lei J, Yang P, Zhang L et al (2014) Diagnostic accuracy of digital breast tomosynthesis versus digital mammography for benign and malignant lesions in breasts: a meta-analysis. Eur Radiol 24:595–602. https://doi.org/10.1007/s00330-013-3012-x

    Article  PubMed  Google Scholar 

  14. Seo N, Kim HH, Shin HJ et al (2014) Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens. Acta Radiol 55:661–667. https://doi.org/10.1177/0284185113503636

    Article  PubMed  Google Scholar 

  15. Nakashima K, Uematsu T, Itoh T et al (2017) Comparison of visibility of circumscribed masses on Digital Breast Tomosynthesis (DBT) and 2D mammography: are circumscribed masses better visualized and assured of being benign on DBT? Eur Radiol 27:570–577. https://doi.org/10.1007/s00330-016-4420-5

    Article  PubMed  Google Scholar 

  16. Choi WJ, Kim HH, Lee SY et al (2016) A comparison between digital breast tomosynthesis and full-field digital mammography for the detection of breast cancers. Breast Cancer 23:886–892. https://doi.org/10.1007/s12282-015-0656-1

    Article  PubMed  Google Scholar 

  17. Seo M, Chang JM, Kim SA et al (2016) Addition of digital breast tomosynthesis to full-field digital mammography in the diagnostic setting: additional value and cancer detectability. J Breast Cancer 19:438–446. https://doi.org/10.4048/jbc.2016.19.4.438

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mercier J, Kwiatkowski F, Abrial C et al (2015) The role of tomosynthesis in breast cancer staging in 75 patients. Diagn Interv Imaging 96:27–35. https://doi.org/10.1016/j.diii.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  19. Roganovic D, Djilas D, Vujnovic S et al (2015) Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer. Bosn J Basic Med Sci 15:64–68. https://doi.org/10.17305/bjbms.2015.616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daniaux M, De Zordo T, Santner W et al (2015) Dual-energy contrast-enhanced spectral mammography (CESM). Arch Gynecol Obstet 292:739–747. https://doi.org/10.1007/s00404-015-3693-2

    Article  PubMed  Google Scholar 

  21. Fallenberg EM, Dromain C, Diekmann F et al (2014) Contrast-enhanced spectral mammography versus MRI: initial results in the detection of breast cancer and assessment of tumour size. Eur Radiol 24:256–264. https://doi.org/10.1007/s00330-013-3007-7

    Article  CAS  PubMed  Google Scholar 

  22. Jochelson MS, Dershaw DD, Sung JS et al (2013) Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 266:743–751. https://doi.org/10.1148/radiol.12121084

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lobbes MBI, Smidt ML, Houwers J et al (2013) Contrast enhanced mammography: techniques, current results, and potential indications. Clin Radiol 68:935–944. https://doi.org/10.1016/j.crad.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  24. Bhimani C, Matta D, Roth RG et al (2017) Contrast-enhanced spectral mammography: technique, indications, and clinical applications. Acad Radiol 24:84–88. https://doi.org/10.1016/j.acra.2016.08.019

    Article  PubMed  Google Scholar 

  25. Sogani J, Morris EA, Kaplan JB et al (2017) Comparison of background parenchymal enhancement at contrast-enhanced spectral mammography and breast Mr imaging. Radiology 282:63–73. https://doi.org/10.1148/radiol.2016160284

    Article  PubMed  Google Scholar 

  26. Jochelson MS, Pinker K, Dershaw DD et al (2017) Comparison of screening CEDM and MRI for women at increased risk for breast cancer: a pilot study. Eur J Radiol 97:37–43. https://doi.org/10.1016/j.ejrad.2017.10.001

    Article  PubMed  Google Scholar 

  27. Cheung YC, Lin YC, Wan YL et al (2014) Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: interobserver blind-reading analysis. Eur Radiol 24:2394–2403. https://doi.org/10.1007/s00330-014-3271-1

    Article  PubMed  Google Scholar 

  28. Appleton DC, Hackney L, Narayanan S (2014) Ultrasonography alone for diagnosis of breast cancer in women under 40. Ann R Coll Surg Engl 96:202–206. https://doi.org/10.1308/003588414X13824511649896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahoney MC, Newell MS (2013) Breast intervention: how I do it. Rsna 268:12–24. https://doi.org/10.1148/radiol

    Article  Google Scholar 

  30. Guo R, Lu G, Qin B, Fei B (2018) Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol 44:37–70. https://doi.org/10.1016/j.ultrasmedbio.2017.09.012

    Article  PubMed  Google Scholar 

  31. Bamber J, Cosgrove D, Dietrich CF et al (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med 34:169–184

    Article  CAS  Google Scholar 

  32. Park CS, Kim SH, Jung NY et al (2015) Interobserver variability of ultrasound elastography and the ultrasound BI-RADS lexicon of breast lesions. Breast Cancer 22:153–160. https://doi.org/10.1007/s12282-013-0465-3

    Article  PubMed  Google Scholar 

  33. Xiao Y, Zeng J, Zhang X et al (2017) Ultrasound strain elastography for breast lesions: computer-aided evaluation with quantifiable elastographic features: computer-aided. J Ultrasound Med 36:1089–1100. https://doi.org/10.7863/ultra.16.01032

    Article  PubMed  Google Scholar 

  34. Stachs A, Pandjaitan A, Martin A et al (2016) Accuracy of tumor sizing in breast cancer: a comparison of strain elastography, 3-D ultrasound and conventional B-mode ultrasound with and without compound imaging. Ultrasound Med Biol 42:2758–2765. https://doi.org/10.1016/j.ultrasmedbio.2016.06.026

    Article  PubMed  Google Scholar 

  35. Hayashi M, Yamamoto Y, Sueta A et al (2015) Associations between elastography findings and clinicopathological factors in breast cancer. Med 94:e2290. https://doi.org/10.1097/MD.0000000000002290

    Article  Google Scholar 

  36. Li DD, Guo LH, Xu HX et al (2015) Acoustic radiation force impulse elastography for differentiation of malignant and benign breast lesions: a meta-analysis. Int J Clin Exp Med 8:4753–4761

    PubMed  PubMed Central  Google Scholar 

  37. Sim YT, Vinnicombe S, Whelehan P et al (2015) Value of shear-wave elastography in the diagnosis of symptomatic invasive lobular breast cancer. Clin Radiol 70:604–609. https://doi.org/10.1016/j.crad.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  38. Fausto A, Rubello D, Carboni A et al (2015) Clinical value of relative quantification ultrasound elastography in characterizing breast tumors. Biomed Pharmacother 75:88–92. https://doi.org/10.1016/j.biopha.2015.08.029

    Article  PubMed  Google Scholar 

  39. Lee SH, Chang JM, Kim WH et al (2013) Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography. Eur Radiol 23:1015–1026. https://doi.org/10.1007/s00330-012-2686-9

    Article  PubMed  Google Scholar 

  40. Skerl K, Vinnicombe S, Thomson K et al (2016) Anisotropy of solid breast lesions in 2D shear wave elastography is an indicator of malignancy. Acad Radiol 23:53–61. https://doi.org/10.1016/j.acra.2015.09.016

    Article  PubMed  Google Scholar 

  41. Chung J, Lee WK, Cha ES et al (2016) Shear-wave elastography for the differential diagnosis of breast papillary lesions. PLoS One 11:e0167118. https://doi.org/10.1371/journal.pone.0167118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Evans A, Rauchhaus P, Whelehan P et al (2014) Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer? Breast Cancer Res Treat 143:153–157. https://doi.org/10.1007/s10549-013-2747-z

    Article  PubMed  Google Scholar 

  43. Song P, Macdonald M, Behler R et al (2015) Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE). IEEE Trans Ultrason Ferroelectr Freq Control 62:290–302. https://doi.org/10.1109/TUFFC.2014.006628

    Article  PubMed  PubMed Central  Google Scholar 

  44. Denis M, Mehrmohammadi M, Song P et al (2015) Comb-push ultrasound shear elastography of breast masses: initial results show promise. PLoS ONE 10:1–14. https://doi.org/10.1371/journal.pone.0119398

    Article  CAS  Google Scholar 

  45. Mehrmohammadi M, Song P, Meixner DD et al (2015) Comb-push ultrasound shear elastography (CUSE) for evaluation of thyroid nodules: preliminary in vivo results. IEEE Trans Med Imaging 34:97–106. https://doi.org/10.1109/TMI.2014.2346498

    Article  PubMed  Google Scholar 

  46. Denis M, Bayat M, Mehrmohammadi M et al (2015) Update on breast cancer detection using comb-push ultrasound shear elastography. IEEE Trans Ultrason Ferroelectr Freq Control 62:1644–1650. https://doi.org/10.1109/TUFFC.2015.007043

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bayat M, Denis M, Gregory A et al (2017) Diagnostic features of quantitative comb-push shear elastography for breast lesion differentiation. PLoS One 12:e0172801. https://doi.org/10.1371/journal.pone.0172801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hunt D, Romero J (2017) Contrast-enhanced ultrasound. Magn Reson Imaging Clin N Am 25:725–736. https://doi.org/10.1016/j.mric.2017.06.004

    Article  PubMed  Google Scholar 

  49. Xiao X, Ou B, Yang H et al (2014) Breast contrast-enhanced ultrasound: is a scoring system feasible?—A preliminary study in China. PLoS One 9:e155517. https://doi.org/10.1371/journal.pone.0105517

    Article  CAS  Google Scholar 

  50. Luo J, Chen J-D, Chen Q et al (2016) Predictive model for contrast-enhanced ultrasound of the breast: is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions? World J Radiol 8:600–609. https://doi.org/10.4329/wjr.v8.i6.600

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jia WR, Chai WM, Tang L et al (2014) Three-dimensional contrast enhanced ultrasound score and dynamic contrast-enhanced magnetic resonance imaging score in evaluating breast tumor angiogenesis: correlation with biological factors. Eur J Radiol 83:1098–1105. https://doi.org/10.1016/j.ejrad.2014.03.027

    Article  PubMed  Google Scholar 

  52. Lee SC, Tchelepi H, Grant E et al (2018) Contrast-enhanced ultrasound imaging of breast masses: adjunct tool to decrease the number of false-positive biopsy results. J Ultrasound Med 9999:1–15. https://doi.org/10.1002/jum.14917

    Article  Google Scholar 

  53. Ma X, Liu R, Zhu C et al (2016) Diagnostic value of contrast-enhanced sonography for differentiation of breast lesions. J Ultrasound Med 35:2095–2102. https://doi.org/10.7863/ultra.15.10005

    Article  PubMed  Google Scholar 

  54. Li Q, Hu M, Chen Z et al (2018) Meta-analysis: contrast-enhanced ultrasound versus conventional ultrasound for differentiation of benign and malignant breast lesions. Ultrasound Med Biol 44:919–929. https://doi.org/10.1016/j.ultrasmedbio.2018.01.022

    Article  PubMed  Google Scholar 

  55. Nykänen A, Arponen O, Sutela A et al (2017) Is there a role for contrast-enhanced ultrasound in the detection and biopsy of MRI only visible breast lesions? Radiol Oncol 51:386–392. https://doi.org/10.1515/raon-2017-0049

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mariscotti G, Houssami N, Durando M et al (2014) Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res 34:1219–1225

    PubMed  Google Scholar 

  57. Kim WH, Chang JM, Moon HG et al (2016) Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers. Eur Radiol 26:1556–1564. https://doi.org/10.1007/s00330-015-3998-3

    Article  PubMed  Google Scholar 

  58. Yang SN, Li FJ, Liao YH et al (2015) Identification of breast cancer using integrated information from MRI and mammography. PLoS One 10:e0128404. https://doi.org/10.1371/journal.pone.0128404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bennani-Baiti B, Bennani-Baiti N, Baltzer PA (2016) Diagnostic performance of breast magnetic resonance imaging in non-calcified equivocal breast findings: results from a systematic review and meta-analysis. PLoS One 11:e0160346. https://doi.org/10.1371/journal.pone.0160346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. An YY, Kim SH, Kang BJ (2014) Characteristic features and usefulness of MRI in breast cancer in patients under 40 years old: correlations with conventional imaging and prognostic factors. Breast Cancer 21:302–315. https://doi.org/10.1007/s12282-012-0383-9

    Article  PubMed  Google Scholar 

  61. Kim JY, Lee SH, Lee JW et al (2015) Magnetic resonance imaging characteristics of invasive breast cancer in women aged less than 35 years. Acta Radiol 56:924–932. https://doi.org/10.1177/0284185114542365

    Article  PubMed  Google Scholar 

  62. An YY, Kim SH, Kang BJ et al (2015) Breast cancer in very young women (< 30 years): correlation of imaging features with clinicopathological features and immunohistochemical subtypes. Eur J Radiol 84:1894–1902. https://doi.org/10.1016/j.ejrad.2015.07.002

    Article  PubMed  Google Scholar 

  63. Debald M, Abramian A, Nemes L et al (2015) Who may benefit from preoperative breast MRI? A single-center analysis of 1102 consecutive patients with primary breast cancer. Breast Cancer Res Treat 153:531–537. https://doi.org/10.1007/s10549-015-3556-3

    Article  PubMed  Google Scholar 

  64. Kim YJ, Kim SH, Kang BJ et al (2014) Readout-segmented echo-planar imaging in diffusion-weighted mr imaging in breast cancer: comparison with single-shot echo-planar imaging in image quality. Korean J Radiol 15:403–410. https://doi.org/10.3348/kjr.2014.15.4.403

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bogner W, Pinker K, Zaric O et al (2015) Bilateral diffusion-weighted MR imaging of breast tumors with submillimeter resolution using readout-segmented echo-planar Imaging at 7 T. Radiology 274:74–84. https://doi.org/10.1148/radiol.14132340

    Article  PubMed  Google Scholar 

  66. Sardanelli F, Carbonaro LA, Montemezzi S et al (2016) Clinical breast MR using MRS or DWI: who is the winner? Front Oncol 6:217. https://doi.org/10.3389/fonc.2016.00217

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang L, Tang M, Min Z et al (2016) Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis. Acta Radiol 57:651–660. https://doi.org/10.1177/0284185115597265

    Article  PubMed  Google Scholar 

  68. Wang X, Wang XJ, Song HS, Chen LH (2015) 1H-MRS evaluation of breast lesions by using total choline signal-to-noise ratio as an indicator of malignancy: a meta-analysis. Med Oncol 32:160. https://doi.org/10.1007/s12032-015-0603-1

    Article  CAS  PubMed  Google Scholar 

  69. Baek HM, Lee YJ (2015) Feasibility of MR spectroscopy for characterizing malignant breast lesions using a clinical 3-T scanner. Breast Cancer 22:510–519. https://doi.org/10.1007/s12282-013-0514-y

    Article  PubMed  Google Scholar 

  70. Sun K, Chai W, Fu C et al (2016) Diffusion-weighted imaging-guided MR spectroscopy in breast lesions using readout-segmented echo-planar imaging. Eur Radiol 26:1565–1574. https://doi.org/10.1007/s00330-015-4000-0

    Article  PubMed  Google Scholar 

  71. Wang J, Wang MY, Kuo WH et al (2016) Proton MR spectroscopy of normal breasts: association of risk factors for breast cancer with water and lipid composition of the breast. Magn Reson Imaging 34:524–528. https://doi.org/10.1016/j.mri.2015.12.028

    Article  PubMed  Google Scholar 

  72. Zhu W, Huang P, Macura KJ, Artemov D (2016) Association between breast cancer, breast density, and body adiposity evaluated by MRI. Eur Radiol 26:2308–2316. https://doi.org/10.1007/s00330-015-4058-8

    Article  PubMed  Google Scholar 

  73. Bennani-Baiti B, Dietzel M, Baltzer PA (2016) MRI background parenchymal enhancement is not associated with breast cancer. PLoS One 11:e0158573. https://doi.org/10.1371/journal.pone.0158573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boria F, Tagliati C, Baldassarre S et al (2018) Morphological MR features and quantitative ADC evaluation in invasive breast cancer: correlation with prognostic factors. Clin Imaging 50:141–146. https://doi.org/10.1016/j.clinimag.2018.02.011

    Article  PubMed  Google Scholar 

  75. Grimm LJ, Soo MS, Yoon S et al (2015) Abbreviated screening protocol for breast MRI: a feasibility study. Acad Radiol 22:1157–1162. https://doi.org/10.1016/j.acra.2015.06.004

    Article  PubMed  Google Scholar 

  76. Davenport MS (2018) Choosing the safest gadolinium-based contrast medium for MR imaging: not so simple after all. Radiology 286:483–485. https://doi.org/10.1148/radiol.2017172224

    Article  PubMed  Google Scholar 

  77. Pinker K, Bogner W, Baltzer P et al (2014) Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Invest Radiol 49:421–430. https://doi.org/10.1097/RLI.0000000000000029

    Article  CAS  PubMed  Google Scholar 

  78. Marino MA, Helbich T, Baltzer P, Pinker-Domenig K (2018) Multiparametric MRI of the breast: a review. J Magn Reson Imaging 47:301–315. https://doi.org/10.1002/jmri.25790

    Article  PubMed  Google Scholar 

  79. Schmitz AM, Veldhuis WB, Menke-Pluijmers MB et al (2015) Multiparametric MRI with dynamic contrast enhancement, diffusion-weighted imaging, and 31-phosphorus spectroscopy at 7 T for characterization of breast cancer. Invest Radiol 50:766–771. https://doi.org/10.1097/RLI.0000000000000183

    Article  CAS  PubMed  Google Scholar 

  80. Menezes GL, Knuttel FM, Stehouwer BL et al (2014) Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World J Clin Oncol 5:61–70. https://doi.org/10.5306/wjco.v5.i2.61

    Article  PubMed  PubMed Central  Google Scholar 

  81. O’Connell AM, Karellas A, Vedantham S (2014) The potential role of dedicated 3D breast CT as a diagnostic tool: review and early clinical examples. Breast J 20:592–605. https://doi.org/10.1111/tbj.12327

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wienbeck S, Lotz J, Fischer U (2017) Review of clinical studies and first clinical experiences with a commercially available cone-beam breast CT in Europe. Clin Imaging 42:50–59. https://doi.org/10.1016/j.clinimag.2016.11.011

    Article  PubMed  Google Scholar 

  83. Yoon HJ, Kim Y, Chang KT, Kim BS (2015) Prognostic value of semi-quantitative tumor uptake on Tc-99 m sestamibi breast-specific gamma imaging in invasive ductal breast cancer. Ann Nucl Med 29:553–560. https://doi.org/10.1007/s12149-015-0977-3

    Article  CAS  PubMed  Google Scholar 

  84. Tan H, Zhang H, Yang W et al (2016) Breast-specific gamma imaging with Tc-99 m-sestamibi in the diagnosis of breast cancer and its semiquantitative index correlation with tumor biologic markers, subtypes, and clinicopathologic characteristics. Nucl Med Commun 37:792–799. https://doi.org/10.1097/MNM.0000000000000518

    Article  CAS  PubMed  Google Scholar 

  85. Even-Sapir E, Golan O, Menes T et al (2016) Breast imaging utilizing dedicated gamma camera and 99 mTc-MIBI: experience at the Tel Aviv Medical Center and review of the literature breast imaging. Semin Nucl Med 46:286–293. https://doi.org/10.1053/j.semnuclmed.2016.01.001

    Article  PubMed  Google Scholar 

  86. Fowler AM (2014) A molecular approach to breast imaging. J Nucl Med 55:177–180. https://doi.org/10.2967/jnumed.113.126102

    Article  PubMed  Google Scholar 

  87. Rechtman LR, Lenihan MJ, Lieberman JH et al (2014) Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. AJR Am J Roentgenol 202:293–298. https://doi.org/10.2214/AJR.13.11585

    Article  PubMed  Google Scholar 

  88. Greene LR, Wilkinson D (2015) The role of general nuclear medicine in breast cancer. J Med Radiat Sci 62:54–65. https://doi.org/10.1002/jmrs.97

    Article  PubMed  PubMed Central  Google Scholar 

  89. Holbrook A, Newell MS (2015) Alternative screening for women with dense breasts: breast-specific gamma imaging (molecular breast imaging). AJR Am J Roentgenol 204:252–256. https://doi.org/10.2214/AJR.14.13525

    Article  PubMed  Google Scholar 

  90. Hendrick RE, Tredennick T (2016) Benefit to radiation risk of breast-specific gamma imaging compared with mammography in screening asymptomatic women with dense breasts. Radiology 281:583–588. https://doi.org/10.1148/radiol.2016151581

    Article  PubMed  Google Scholar 

  91. Park JY, Yi SY, Park HJ et al (2014) Breast-specific gamma imaging: correlations with mammographic and clinicopathologic characteristics of breast cancer. AJR Am J Roentgenol 203:223–228. https://doi.org/10.2214/AJR.13.11566

    Article  PubMed  Google Scholar 

  92. Park JS, Lee AY, Jung KP et al (2013) Diagnostic performance of breast-specific gamma imaging (BSGI) for breast cancer: usefulness of dual-phase imaging with 99 mTc-sestamibi. Nucl Med Mol Imaging 47:18–26. https://doi.org/10.1007/s13139-012-0176-2

    Article  CAS  PubMed  Google Scholar 

  93. Park KS, Chung HW, Yoo YB et al (2014) Complementary role of semiquantitative analysis of breast-specific gamma imaging in the diagnosis of breast cancer. AJR Am J Roentgenol 202:690–695. https://doi.org/10.2214/AJR.13.11324

    Article  CAS  PubMed  Google Scholar 

  94. Johnson N, Sorenson L, Bennetts L et al (2014) Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI. Am J Surg 207:698–701. https://doi.org/10.1016/j.amjsurg.2013.12.015

    Article  PubMed  Google Scholar 

  95. Tan H, Jiang L, Gu Y et al (2014) Visual and semi-quantitative analyses of dual-phase breast-specific gamma imaging with Tc-99 m-sestamibi in detecting primary breast cancer. Ann Nucl Med 28:17–24. https://doi.org/10.1007/s12149-013-0776-7

    Article  CAS  PubMed  Google Scholar 

  96. Meissnitzer T, Seymer A, Keinrath P et al (2015) Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. Br J Radiol 88:20150147. https://doi.org/10.1259/bjr.20150147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu X, Hu G, Zhang Z et al (2016) Retrospective and comparative analysis of 99mTc-Sestamibi breast specific gamma imaging versus mammography, ultrasound, and magnetic resonance imaging for the detection of breast cancer in Chinese women. BMC Cancer 16:450. https://doi.org/10.1186/s12885-016-2537-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cho MJ, Yang JH, Yu YB et al (2016) Validity of breast-specific gamma imaging for breast imaging reporting and data system 4 lesions on mammography and/or ultrasound. Ann Surg Treat Res 90:194–200. https://doi.org/10.4174/astr.2016.90.4.194

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kuhn KJ, Rapelyea JA, Torrente J et al (2016) comparative diagnostic utility of low-dose breast-specific gamma imaging to current clinical standard. Breast J 22:180–188. https://doi.org/10.1111/tbj.12550

    Article  PubMed  Google Scholar 

  100. Jadvar H, Colletti PM (2014) Competitive advantage of PET/MRI. Eur J Radiol 83:84–94. https://doi.org/10.1016/j.ejrad.2013.05.028

    Article  PubMed  Google Scholar 

  101. Koolen BB, Vidal-Sicart S, Benlloch Baviera JM, Valdés Olmos RA (2014) Evaluating heterogeneity of primary tumor 18F-FDG uptake in breast cancer with a dedicated breast PET (MAMMI). Nucl Med Commun 35:446–452. https://doi.org/10.1097/MNM.0000000000000072

    Article  CAS  PubMed  Google Scholar 

  102. Magometschnigg HF, Baltzer PA, Fueger B et al (2015) Diagnostic accuracy of 18F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T. Eur J Nucl Med Mol Imaging 42:1656–1665. https://doi.org/10.1007/s00259-015-3099-1

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, Kuo WH, Shih TT, Yen RF (2014) Using 18F-FLT PET to distinguish between malignant and benign breast lesions with suspicious findings in mammography and breast ultrasound. Ann Nucl Med 28:941–949. https://doi.org/10.1007/s12149-014-0889-7

    Article  PubMed  Google Scholar 

  104. Vercher-Conejero JL, Pelegrí-Martinez L, Lopez-Aznar D, Cózar-Santiago Mdel P (2015) Positron emission tomography in breast cancer. Diagnostics (Basel) 5:61–83. https://doi.org/10.3390/diagnostics5010061

    Article  CAS  Google Scholar 

  105. Hsu DF, Freese DL, Levin CS (2016) Breast-dedicated radionuclide imaging systems. J Nucl Med 57(Suppl 1):40S–45S. https://doi.org/10.2967/jnumed.115.157883

    Article  CAS  PubMed  Google Scholar 

  106. Yamamoto Y, Tasaki Y, Kuwada Y et al (2016) A preliminary report of breast cancer screening by positron emission mammography. Ann Nucl Med 30:130–137. https://doi.org/10.1007/s12149-015-1040-0

    Article  PubMed  Google Scholar 

  107. Kalles V, Zografos GC, Provatopoulou X et al (2013) The current status of positron emission mammography in breast cancer diagnosis. Breast Cancer 20:123–130. https://doi.org/10.1007/s12282-012-0433-3

    Article  PubMed  Google Scholar 

  108. Argus A, Mahoney MC (2014) Positron emission mammography: diagnostic imaging and biopsy on the same day. Am J Roentgenol 202:216–222. https://doi.org/10.2214/AJR.12.9426

    Article  Google Scholar 

  109. Li L, Gu XY, Li DW et al (2015) Performance evaluation and initial clinical test of the positron emission mammography system (PEMi). IEEE Trans Nucl Sci 62:2048–2056. https://doi.org/10.1109/TNS.2015.2457957

    Article  CAS  Google Scholar 

  110. Watanabe G, Itoh M, Duan X et al (2018) 18F-fluorodeoxyglucose specimen-positron emission mammography delineates tumour extension in breast-conserving surgery: preliminary results. Eur Radiol 28:1929–1937. https://doi.org/10.1007/s00330-017-5170-8

    Article  PubMed  Google Scholar 

  111. Müller FH, Farahati J, Müller AG et al (2016) Positron emission mammography in the diagnosis of breast cancer. Is maximum PEM uptake value a valuable threshold for malignant breast cancer detection? NuklearMedizin 55:15–20. https://doi.org/10.3413/Nukmed-0753-15-07

    Article  PubMed  Google Scholar 

  112. Yamamoto Y, Tasaki Y, Kuwada Y et al (2013) Positron emission mammography (PEM): reviewing standardized semiquantitative method. Ann Nucl Med 27:795–801. https://doi.org/10.1007/s12149-013-0748-y

    Article  PubMed  PubMed Central  Google Scholar 

  113. Koo HR, Moon WK, Chun IK et al (2013) Background 18F-FDG uptake in positron emission mammography (PEM): correlation with mammographic density and background parenchymal enhancement in breast MRI. Eur J Radiol 82:1738–1742. https://doi.org/10.1016/j.ejrad.2013.05.016

    Article  PubMed  Google Scholar 

  114. Kalinyak JE, Berg WA, Schilling K et al (2014) Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging 41:260–275. https://doi.org/10.1007/s00259-013-2553-1

    Article  PubMed  Google Scholar 

  115. Yanai A, Itoh M, Hirakawa H et al (2018) Newly-developed positron emission mammography (PEM) device for the detection of small breast cancer. Tohoku J Exp Med 245:13–19. https://doi.org/10.1620/tjem.245.13

    Article  CAS  PubMed  Google Scholar 

  116. Teixeira SC, Rebolleda JF, Koolen BB et al (2016) Evaluation of a hanging-Breast PET system for primary tumor visualization in patients with stage I-III breast cancer: comparison with standard PET/CT. Am J Roentgenol 206:1307–1314. https://doi.org/10.2214/ajr.15.15371

    Article  Google Scholar 

  117. Koolen BB, Aukema TS, Gonzalez Martínez AJ et al (2013) First clinical experience with a dedicated PET for hanging breast molecular imaging. Q J Nucl Med Mol Imaging 57:92–100. https://doi.org/10.1016/S0959-8049(12)70159-4

    Article  CAS  PubMed  Google Scholar 

  118. García Hernández T, Sánchez Jurado R, Roselló Ferrando J et al (2016) Performance evaluation of a high resolution dedicated breast PET scanner. Med Phys 43:2261–2272. https://doi.org/10.1118/1.4945271

    Article  PubMed  Google Scholar 

  119. O’Connor MK, Tran TD, Swanson TN et al (2017) Improved visualization of breast tissue on a dedicated breast PET system through ergonomic redesign of the imaging table. EJNMMI Res 7:100. https://doi.org/10.1186/s13550-017-0351-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Taneja S, Jena A, Goel R et al (2014) Simultaneous whole-body 18F-FDG PET-MRI in primary staging of breast cancer: a pilot study. Eur J Radiol 83:2231–2239. https://doi.org/10.1016/j.ejrad.2014.09.008

    Article  PubMed  Google Scholar 

  121. Botsikas D, Kalovidouri A, Becker M et al (2016) Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging. Eur Radiol 26:2297–2307. https://doi.org/10.1007/s00330-015-4054-z

    Article  PubMed  Google Scholar 

  122. Bitencourt AG, Lima EN, Chojniak R et al (2014) Multiparametric evaluation of breast lesions using PET-MRI: initial results and future perspectives. Medicine (Baltimore) 93:e115. https://doi.org/10.1097/MD.0000000000000115

    Article  Google Scholar 

  123. Pinker K, Bogner W, Baltzer P et al (2014) Improved differentiation of benign and malignant breast tumors with multiparametric 18Fluorodeoxyglucose positron emission tomography magnetic resonance imaging: a feasibility study. Clin Cancer Res 20:3540–3549. https://doi.org/10.1158/1078-0432.CCR-13-2810

    Article  CAS  PubMed  Google Scholar 

  124. Pace L, Nicolai E, Luongo A et al (2014) Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 83:289–296. https://doi.org/10.1016/j.ejrad.2013.11.002

    Article  PubMed  Google Scholar 

  125. Plecha DM, Faulhaber P (2017) PET/MRI of the breast. Eur J Radiol 94:A26–A34. https://doi.org/10.1016/j.ejrad.2017.05.006

    Article  PubMed  Google Scholar 

  126. Sher A, Valls L, Muzic Raymond F JR et al (2014) Whole-body positron emission tomography-magnetic resonance in breast cancer. Semin Roentgenol 49:313–320. https://doi.org/10.1053/j.ro.2014.08.001

    Article  PubMed  Google Scholar 

  127. Bitencourt AG, Lima EN, Chojniak R et al (2014) Can 18F-FDG PET improve the evaluation of suspicious breast lesions on MRI? Eur J Radiol 83:1381–1386. https://doi.org/10.1016/j.ejrad.2014.05.021

    Article  PubMed  Google Scholar 

  128. Simanek M, Koranda P (2016) SPECT/CT imaging in breast cancer—current status and challenges. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 160:474–483. https://doi.org/10.5507/bp.2016.036

    Article  PubMed  Google Scholar 

  129. Jimenez-Heffernan A, Ellmann A, Sado H et al (2015) Results of a prospective multicenter international atomic energy agency sentinel node trial on the value of SPECT/CT over planar imaging in various malignancies. J Nucl Med 56:1338–1344. https://doi.org/10.2967/jnumed.114.153643

    Article  CAS  PubMed  Google Scholar 

  130. Dalm SU, Verzijlbergen J, De Jong M (2017) Review: receptor targeted nuclear imaging of breast cancer. Int J Mol Sci 18:E260. https://doi.org/10.3390/ijms18020260

    Article  CAS  PubMed  Google Scholar 

  131. Dalm SU, Melis M, Emmering J et al (2016) Breast cancer imaging using radiolabeled somatostatin analogues. Nucl Med Biol 43:559–565. https://doi.org/10.1016/j.nucmedbio.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  132. Wang L, Tang K, Zhang Q et al (2013) Somatostatin receptor-based molecular imaging and therapy for neuroendocrine tumors. Biomed Res Int 2013:102819. https://doi.org/10.1155/2013/102819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dalm SU, Sieuwerts AM, Look MP et al (2015) Clinical relevance of targeting the gastrin-releasing peptide receptor, somatostatin receptor 2, or chemokine C–X–C motif receptor 4 in breast cancer for imaging and therapy. J Nucl Med 56:1487–1493. https://doi.org/10.2967/jnumed.115.160739

    Article  CAS  PubMed  Google Scholar 

  134. Thakur ML, Zhang K, Berger A et al (2013) VPAC1 receptors for imaging breast cancer: a feasibility study. J Nucl Med 54:1019–1025. https://doi.org/10.2967/jnumed.112.114876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Paquette M, Lavallée É, Phoenix S et al (2018) Improved estrogen receptor assessment by PET using the novel radiotracer 18F-4FMFES in ER-positive breast cancer patients: an ongoing phase II clinical trial. J Nucl Med 59:197–203. https://doi.org/10.2967/jnumed.117.194654

    Article  CAS  PubMed  Google Scholar 

  136. Tade FI, Cohen MA, Styblo TM et al (2016) Anti-3-18F-FACBC (18F-Fluciclovine) PET/CT of breast cancer: an exploratory study. J Nucl Med 57:1357–1363. https://doi.org/10.2967/jnumed.115.171389

    Article  CAS  PubMed  Google Scholar 

  137. Chen Q, Xie Q, Zhao M et al (2015) Diagnostic value of (99m)Tc-3PRGD2 scintimammography for differentiation of malignant from benign breast lesions: comparison of visual and semi-quantitative analysis. Hell J Nucl Med 18:193–198. https://doi.org/10.1967/s002449910302

    Article  PubMed  Google Scholar 

  138. Liu L, Song Y, Gao S et al (2014) (99m)Tc-3PRGD2 scintimammography in palpable and nonpalpable breast lesions. Mol Imaging. https://doi.org/10.2310/7290.2014.00010

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ma Q, Chen B, Gao S et al (2014) 99mTc-3P4-RGD2 scintimammography in the assessment of breast lesions: comparative study with 99mTc-MIBI. PLoS One 9:e108349. https://doi.org/10.1371/journal.pone.0108349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ortiz-Arzate Z, Santos-Cuevas CL, Ocampo-García BE et al (2014) Kit preparation and biokinetics in women of 99mTc-EDDA/HYNIC-E- [c(RGDfK)]2 for breast cancer imaging. Nucl Med Commun 35:423–432. https://doi.org/10.1097/MNM.0000000000000065

    Article  CAS  PubMed  Google Scholar 

  141. Chen Q, Ma Q, Chen M et al (2015) An exploratory study on 99mTc-RGD-BBN peptide scintimammography in the assessment of breast malignant lesions compared to 99mTc-3P4-RGD2. PLoS ONE 10:e0123401. https://doi.org/10.1371/journal.pone.0123401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kenny L (2016) The use of novel pet tracers to image breast cancer biologic processes such as proliferation, DNA damage and repair, and angiogenesis. J Nucl Med 57:89S–95S. https://doi.org/10.2967/jnumed.115.157958

    Article  CAS  PubMed  Google Scholar 

  143. Linden HM, Dehdashti F (2013) Novel methods and tracers for breast cancer imaging. Semin Nucl Med 43:324–329. https://doi.org/10.1053/j.semnuclmed.2013.02.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Ebru Salmanoglu is the visiting scholar to the Thakur laboratories and thanks The Scientific and Technological Research Council of Turkey (TÜBİTAK) for their fellowship and Dr. Thakur for his teaching and support. Dr. Thakur thanks, NIH CA 109231 and NIH/NCI RO1CA157372, awards that in part supported the preparation of this review. The skillful assistance of Ms. Kim Lee is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew L. Thakur.

Ethics declarations

Conflict of interest

All the authors, Ebru Salmanoglu, Kimberly Klinger, Chandni Bhimani, Alexander Sevrukov, and Mathew Thakur, declare that there are no conflicts of interest.

Human and animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmanoglu, E., Klinger, K., Bhimani, C. et al. Advanced approaches to imaging primary breast cancer: an update. Clin Transl Imaging 7, 381–404 (2019). https://doi.org/10.1007/s40336-019-00346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-019-00346-z

Keywords

Navigation