Skip to main content

Advertisement

Log in

The current and evolving role of FDG–PET/CT in personalized iodine-131 therapy of differentiated thyroid cancer

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Several approaches have been recommended for the selection of patients with differentiated thyroid cancer amenable for postoperative radioiodine remnant ablation or repeated radioiodine treatment, though with inadequate results. 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography is gaining consideration for predicting disease-free or survival of differentiated thyroid carcinoma patients, in particular in the peri-or post-surgery setting and for the detection of recurrence in patients with elevated or rising thyroglobulin without evidence of disease on neck ultrasound or iodine scintigraphy. This paper aims to review the role of FDG–PET/CT in tailoring iodine-131 empiric therapy for radioiodine remnant ablation and the detection of recurrence in patients with elevated thyroglobulin and negative iodine-123 scan.

Methods

A literature search up to May 2017 of MEDLINE® and SCOPUS® with the Mesh terms: “PET/CT”, “iodine-131 therapy”, “differentiated thyroid cancer” and “prognosis” was performed. Thereafter, papers dealing with radioiodine remnant ablation and empiric therapy were selected.

Results

Ninety papers were retrieved from the initial search and 19 considered for the review. The percentage of positive FDG–PET/CT performed at radioiodine remnant ablation or shortly after ranged from 17 to 69%, with highest values in high- and intermediate-to-high risk patients. The response rate to radioiodine remnant ablation and survival were consistently higher in negative FDG–PET/CT patients. Besides, FDG–PET/CT imaging was found to be a very accurate diagnostic tool for the detection of recurrence in patients with elevated thyroglobulin and negative iodine-123 scan, discriminating patients needing further empirical iodine-131 therapy from those who could benefit from alternative approaches.

Conclusions

Although a meta-analysis was not possible due to the heterogeneity and the small population samples of the studies retrieved, the results of the present review support the use of FDG–PET/CT in tailoring iodine-131 therapy when used close to radioiodine remnant ablation and in patients amenable to iodine-131 empiric therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Joensuu H, Ahonen A (1987) Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 28:910–914

    CAS  PubMed  Google Scholar 

  2. Abraham T, Schöder H (2011) Thyroid cancer—indications and opportunities for positron emission tomography/computed tomography imaging. Semin Nucl Med 41:121–138

    Article  PubMed  Google Scholar 

  3. Treglia G, Muoio B, Giovanella L, Salvatori M (2013) The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview. Eur Arch Otorhinolaryngol 270:1783–1787

    Article  PubMed  Google Scholar 

  4. Wiebel J, Banerjee M, Muenz DG, Worden FP, Haymart MR (2015) Trends in imaging after thyroid cancer diagnosis. Cancer 121:1387–1394

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wiebel JL, Esfandiari NH, Papaleontiou M, Worden FP, Haymart MR (2015) Evaluating positron emission tomography use in differentiated thyroid cancer. Thyroid 25:1026–1032

    Article  PubMed  PubMed Central  Google Scholar 

  7. Townsend DW (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49:938–955

    Article  PubMed  Google Scholar 

  8. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grabellus F, Nagarajah J, Bockisch A, Schmid KW, Sheu SY (2012) Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med 37:121–127

    Article  PubMed  Google Scholar 

  10. Matsuzu K, Segade F, Matsuzu U, Carter A, Bowden DW, Terrier ND (2004) Differential expression of glucose transporters in normal and pathological thyroid tissue. Thyroid 14:806–812

    Article  CAS  PubMed  Google Scholar 

  11. Schonberger J, Ruschoff J, Grimm D, Marienhagen J, Rummele P, Meyringer et al (2002) Glucose transporter 1 gene expression is related to thyroid neoplasm with an unfarovable prognosis: an immunohistochemical study. Thyroid 12:747–754

    Article  PubMed  Google Scholar 

  12. Ciampi R, Vivaldi A, Romei C, Del Guerra A, Salvadori P, Cosci A et al (2008) Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors. Mol Cell Endocrinol 201:57–62

    Article  Google Scholar 

  13. Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR et al (2008) Molecular characteristics in papillary thyroid cancers (PTCs) with no 131 I uptake. Clin Endocrinol 68:108–116

    Article  CAS  Google Scholar 

  14. Ricare-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M et al (2009) Mutational profile of advanced primary and metastatic radioactive iodine refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69:4885–4893

    Article  Google Scholar 

  15. Treglia G, Giovanella L (2015) Prognostic role of FDG-PET/CT in differentiated thyroid carcinoma: Where are we now? J Med Imaging Radiat Oncol 59:278–280

    Article  PubMed  Google Scholar 

  16. Al-Zahrani AS, Abouzied MEM, SalamSA Mohamed G, Rifai A, Sugair AA, Amin T (2008) The role of F-18-fluorodeoxyglucose positron emission tomography in the postoperative evaluation of differentiated thyroid cancer. Eur J Endocrinol 158:683–689

    Article  CAS  PubMed  Google Scholar 

  17. Gaertner FC, Okamoto S, Shiga T, Ito YM, Uchiyama Y, Manabe O, Hattori N, Tamaki N (2015) FDG PET performed at thyroid remnant ablation has a higher predictive value for long-term survival of high-risk patients with well-differentiated thyroid cancer than radioiodine uptake. Clin Nucl Med 40:378–383

    Article  PubMed  Google Scholar 

  18. Iwano S, Kato K, Ito S, Tsuchiya K, Naganawa S (2012) FDG-PET performed concurrently with initial I-131 ablation for differentiated thyroid cancer. Ann Nucl Med 26:207–213

    Article  CAS  PubMed  Google Scholar 

  19. Lee JW, Lee SM, Lee DH, Kim YJ (2013) Clinical utility of 18F-FDG PET/CT concurrent with 131I therapy in intermediate-to-high-risk patients with differentiated thyroid cancer: dual-center experience with 286 patients. J Nucl Med 54:1230–1236

    Article  CAS  PubMed  Google Scholar 

  20. Nascimento C, Borget I, Al Ghuzlan A, Deandreis D, Hartl D, Lumbroso L, Berdelou A, Lepoutre-Lussey C, Mirghani H, Baudin E, Schlumberger M, Leboulleux S (2015) Postoperative fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer. Thyroid 25(4):437–444

    Article  CAS  PubMed  Google Scholar 

  21. Rosenbaum-Krumme SJ, Görges R, Bockisch A, Binse I (2012) 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging 39:1373–1380

    Article  PubMed  Google Scholar 

  22. Ruhlmann M, Binse I, Bockisch A, Rosenbaum-Krumme SJ (2016) Initial [18F]FDG PET/CT in high-risk DTC patients. A three-year follow-up. Nuklearmedizin 55(3):99–103

    Article  PubMed  Google Scholar 

  23. Pace L, Klain M, Salvatore B, Nicolai E, Zampella E, Assante R, Pellegrino T, Storto G, Fonti R, Salvatore M (2015) Prognostic Role of 18F-FDG PET/CT in the postoperative evaluation of differentiated thyroid cancer patients. Clin Nucl Med 40:111–115

    Article  PubMed  Google Scholar 

  24. Kim MH, O JH, Ko SH, Bae JS, Lim DJ, Kim SH, Baek KH, Lee JM, Kang MI, Cha BY, Lee KW (2012) Role of [18F]-Fluorodeoxy-D-Glucose Positron Emission Tomography and Computed Tomography in the Early Detection of Persistent/Recurrent Thyroid Carcinoma in Intermediate-to-High Risk Patients Following Initial Radioactive Iodine Ablation Therapy. Thyroid 22:157–164

    Article  CAS  PubMed  Google Scholar 

  25. Triviño Ibáñez EM, Muros MA, Torres Vela E, Llamas Elvira JM (2016) The role of early 18F-FDG PET/CT in therapeutic management and ongoing risk stratification of high/intermediate-risk thyroid Carcinoma. Endocrine 51:490–498

    Article  PubMed  Google Scholar 

  26. Giovanella L, Ceriani L, Palma D, Suriano S, Castellani M, Verburg FA (2012) Relationship between serum thyroglobulin and 18FDG-PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck 34:626–631

    Article  PubMed  Google Scholar 

  27. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, Tuttle RM, Drucker W, Larson SM (2006) Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-d-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 91:498–505

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Larson SM, Tuttle RM, Kalaigian H, Kolbert K, Sonenberg M, Robbins RJ (2001) Resistance of [18f]-fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid 11:1169–1175

    Article  CAS  PubMed  Google Scholar 

  29. Salvatore B, Paone G, Klain M, Storto G, Nicolai E, D’Amico D, Della Morte AM, Pace L, Salvatore M (2008) Fluorodeoxyglucose PET/CT in patients with differentiated thyroid cancer and elevated thyroglobulin after total thyroidectomy and (131)I ablation. Q J Nucl Med Mol Imaging 52:2–8

    CAS  PubMed  Google Scholar 

  30. Kloos RT (2008) Approach to the patient with a positive serum thyroglobulin and a negative radioiodine scan after initial therapy for differentiated thyroid cancer. J Clin Endocrinol Metab 93:1519–1525

    Article  CAS  PubMed  Google Scholar 

  31. Caetano R, Bastos CR, de Oliveira IA, da Silva RM, Fortes CP, Pepe VL, Reis LG, Braga JU (2016) Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative 131I whole-body scan results: A meta-analysis. Head Neck 38(2):316–327

    Article  PubMed  Google Scholar 

  32. Treglia G, Bertagna F, Piccardo A, Giovanella L (2013) 131I whole-body scan or 18FDG PET/CT for patients with elevated thyroglobulin and negative ultrasound? Clin Transl Imaging 1:175–183

    Article  Google Scholar 

  33. Padovani RP, Robenshtok E, Brokhin M, Tuttle RM (2012) Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid 22:778–783

    Article  CAS  PubMed  Google Scholar 

  34. Deandreis D, Al Ghuzlan A, Leboulleux S, Lacroix L, Garsi JP, Talbot M, Lumbroso J, Baudin E, Caillou B, Bidart JM, Schlumberger M (2011) Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 18:159–169

    Article  CAS  PubMed  Google Scholar 

  35. Dennis K, Hay JH, Wilson DC (2012) Effect of 18F-fluorodeoxyglucose positron emission tomography/computed tomography-guided management of suspected recurrent papillary thyroid carcinoma: long-term follow-up with tumour marker responses. Clin Oncol 24:e168–e172

    Article  CAS  Google Scholar 

  36. Leboulleux S, El Bez I, Borget I, Elleuch M, Déandreis D, Al Ghuzlan A, Chougnet C, Bidault F, Mirghani H, Lumbroso J, Hartl D, Baudin E, Schlumberger M (2012) Postradioiodine treatment whole-body scan in the era of 18-fluorodeoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid 22:832–838

    Article  CAS  PubMed  Google Scholar 

  37. Rosario PW, Mourão GF, dos Santos JB, Calsolari MR (2014) Is empirical radioactive iodine therapy still a valid approach to patients with thyroid cancer and elevated thyroglobulin? Thyroid 24:533–536

    Article  CAS  PubMed  Google Scholar 

  38. Marcus C, Antoniou A, Rahmim A, Ladenson P, Subramaniam RM (2015) Fluorodeoxyglucose positron emission tomography/computerized tomography in differentiated thyroid cancer management: importance of clinical justification and value in predicting survival. J Med Imaging Radiat Oncol 59:281–288

    Article  PubMed  Google Scholar 

  39. Vural GU, Akkas BE, Ercakmak N, Basu S, Alavi A (2012) Prognostic significance of FDG PET/CT on the follow-up of patients of differentiated thyroid carcinoma with negative iodine-131 whole-body scan and elevated thyroglobulin levels. Clin Nucl Med 37:953–959

    Article  PubMed  Google Scholar 

  40. Masson-Deshayes S, Schvartz C, Dalban C, Guendouzen S, Pochart JM, Dalac A, Fieffe S, Bruna-Muraille C, Dabakuyo-Yonli TS, Papathanassiou D (2015) Prognostic value of 18F-FDG PET/CT metabolic parameters in metastatic differentiated thyroid cancers. Clin Nucl Med 40:469–475

    Article  PubMed  Google Scholar 

  41. Terroir M, Borget I, Bidault F, Ricard M, Deschamps F, Hartl D, Tselikas L, Dercle L, Lumbroso J, Baudin E, Berdelou A, Deandreis D, Schlumberger M, Leboulleux S (2017) The intensity of 18FDG uptake does not predict tumor growth in patients with metastatic differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 44:638–646

    Article  CAS  PubMed  Google Scholar 

  42. Chao M (2010) Management of differentiated thyroid cancer with rising thyroglobulin and negative diagnostic radioiodine whole body scan. Clin Oncol 22:438–447

    Article  CAS  Google Scholar 

  43. Giovanella L, Trimboli P, Verburg FA, Treglia G, Piccardo A, Foppiani L, Ceriani L (2013) Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 40:874–880

    Article  CAS  PubMed  Google Scholar 

  44. Kelders A, Kennes LN, Krohn T, Behrendt FF, Mottaghy FM, Verburg FA (2014) Relationship between positive thyroglobulin doubling time and 18F-FDG PET/CT-positive, 131I-negative lesions. Nucl Med Commun 35:176–181

    Article  PubMed  Google Scholar 

  45. Leboulleux S, Schroeder PR, Busaidy NL, Auperin A, Corone C, Jacene HA, Ewertz ME, Bournaud C, Wahl RL, Sherman SI, Ladenson PW, Schlumberger M (2009) Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-Fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab 94:1310–1316

    Article  CAS  PubMed  Google Scholar 

  46. Mahajan S, Divgi CR (2016) The role of iodine-124 positron emission tomography in molecular imaging. Clin Transl Imaging 4:297

    Article  Google Scholar 

  47. Kist JW, de Keizer B, van der Vlies M, Brouwers AH AH, Huysmans DA, van der Zant FM, Hermsen R, Stokkel MP, Hoekstra OS, Vogel WV, for the THYROPET Study Group (2016) 124I PET/CT to predict the outcome of blind 131I treatment in patients with biochemical recurrence of differentiated thyroid cancer: results of a Multicenter Diagnostic Cohort Study (THYROPET). J Nucl Med 57:701–707

    Article  CAS  PubMed  Google Scholar 

  48. Carneiro RM, Carneiro BA, Agulnik M, Kopp PA, Giles FJ (2015) Targeted therapies in advanced differentiated thyroid cancer. Cancer Treatment Reviews 41:690–698

    Article  CAS  PubMed  Google Scholar 

  49. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, Bauman JE, Martins RG (2010) Phase II study of daily sunitinib in FDG-PET positive, iodine refractory, differentiated thyroid cancer and metastatic medullary carcinoma of thyroid with functional imaging correlation. Clin Cancer Res. 16(21):5260–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marotta V, Ramundo V, Camera L, Del Prete M, Fonti R, Raffaella Esposito R, Palmieri G, Salvatore M, Vitale M, Colao A, Faggiano A (2013) Sorafenib in advanced iodine-refractory differentiated thyroid cancer: efficacy, safety and exploratory analysis of role of serum thyroglobulin and FDG-PET. Clin Endocrinol 78:760–767

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pace.

Ethics declarations

Conflict of interest

The authors, Leonardo Pace, Michele Klain, Luca Tagliabue and Giovanni Sorto declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pace, L., Klain, M., Tagliabue, L. et al. The current and evolving role of FDG–PET/CT in personalized iodine-131 therapy of differentiated thyroid cancer. Clin Transl Imaging 5, 533–544 (2017). https://doi.org/10.1007/s40336-017-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-017-0254-7

Keywords

Navigation