Skip to main content
Log in

High-resolution quantitative reconstruction of Late Cretaceous-Tertiary erosion in the West Netherlands Basin using multi-formation compaction trends and seismic data: implications for geothermal exploration

  • Special issue - Geothermal Energy System
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

A workflow is presented to determine the detailed, high-resolution pattern of erosion in maturely explored Sedimentary Basins by analysing the sonic log-based interval velocity patterns of nine stratigraphic intervals complemented by a geometrical approach involving the extrapolation of 3-D seismic reflectors. The jointly evaluated results of the two approaches not only provide important constraints on the inversion tectonics of a basin, but are also used to better constrain its maturity history and reservoir quality for geothermal energy. The developed workflow is demonstrated for the West Netherlands Basin. The pattern of erosion, which is consistent with observed subcrop maps, shows increasing amount of erosion towards the East and reflects the complex deformation of the basin, in which the reactivation of faults played a major role. Indirectly the results also indicate that continuous, syn-inversion sedimentation was taking place on the flanks of the basin during the Late Cretaceous, while its centre was characterised by non-deposition or slight erosion. For geothermal exploration the inferred variations of amount of erosion has implications for the spatial distribution of porosity which is an important parameter for the assessment of reservoir quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdul Fattah R, Verweij JM, Witmans N, Veen JT (2012) 4D Basin modelling of the Broad Fourteens Basin and offshore West Netherlands Basin; erosion and heat flow reconstruction and its influence on temperature, maturity and hydrocarbon generation. TNO public report TNO 2012 R10670: 168

  • Andriessen PAM (1995) Fission-track analysis; principles, methodology and implications for tectono-thermal histories of sedimentary basins, orogenic belts, and continental margins. Geol Mijnbouw 74(1):1–12

    Google Scholar 

  • Anselmetti FS, Eberli GP (1993) Controls on sonic velocity in carbonates. Pure appl Geophys 141(2–4):287–323

    Article  Google Scholar 

  • Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons, Special Publication of the European Association of Petroleum Geoscientists, 1. Oxford University Press, Oxford, pp 149–159

    Google Scholar 

  • Beekman F, Badsi M, Van Wees JD (2000) Faulting, fracturing and in situ stress prediction in the Ahnet Basin, Algeria—a finite element approach. Tectonophysics 320:311–329

    Article  Google Scholar 

  • Bodenhausen JWA, Ott WF (1981) Habitat of the Rijswijk oil province, onshore, The Netherlands. In: Illing LV, Hobson GD (eds) Petroleum geology of the continental shelf of NW Europe. Institute of Petroleum, London, pp 301–309

    Google Scholar 

  • Bouw L, Oude Essink GHP (2003) Fluid flow in the northern Broad Fourteens Basin during Late Cretaceous inversion. Neth J Geosci/Geologie en Mijnbouw 82(1):55–69

    Article  Google Scholar 

  • Bruns B, Littke R, Gasparik L, Van Wees JD, Nelskamp S (2016) Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands: a 3D basin modelling study. Basin Res. doi:10.1111/bre.12096

    Google Scholar 

  • Bulat J, Stoker SJ (1987) Uplift determination from interval velocity studies, UK southern North Sea. In: Brooks J, Glennie K (eds) Petroleum geology of North West Europe. Graham and Trotman, London, pp 293–305

    Google Scholar 

  • Corcoran DV, Doré AG (2005) A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins. Earth Sci Rev 72:129–168

    Article  Google Scholar 

  • Cornford C (1994) The Mandal-Ekofisk(!) petroleum system in the Central Graben of the North Sea. In: Magoon LB, Dow WG (eds) The petroleum system—from source to trap: AAPG Memoir 60, pp 537–571

  • De Jager J (2007) Geological development. In: Wong TE, Batjes DAJ, de Jager J (eds) Geology of the Netherlands. Royal Netherlands Academy of Arts and Science, pp 5–26

  • De Jager J, Doyle MA, Grantham PJ, Mabillard JE (1996) Hydrocarbon habitat of the West Netherlands Basin. In: Rondeel HE, Batjes DAJ, Nieuwenhuijs WH (eds) Geology of gas and oil under the Netherlands. Kluwer Academic Publishing, Dordrecht, pp 191–209

    Chapter  Google Scholar 

  • Den Hartog Jager DG (1996) Fluviomarine sequences in the Lower Cretaceous of the West Netherlands Basin: correlation and seismic expression. In: Rondeel HE, Batjes DAJ, Nieuwenhuijs WH (eds) Geology of gas and oil under the Netherlands. Kluwer Academic Publishing, Dordrecht, pp 229–241

    Chapter  Google Scholar 

  • DeVault B, Jeremiah J (2002) Tectonostratigraphy of the Nieuwerkerk Formation (Delfland subgroup), West Netherlands Basin. AAPG Bull 86(10):1679–1707

    Google Scholar 

  • Dronkers AJ, Mrozek FJ (1991) Inverted basins of the Netherlands. First Break 9(9):409–425

    Google Scholar 

  • Fabricius IL (2003) How burial diagenesis of chalk sediments controls sonic velocity and porosity. AAPG Bull 87(11):1755–1778

    Article  Google Scholar 

  • Gras R, Geluk MC (1999) Late Cretaceous-early tertiary sedimentation and tectonic inversion in the southern Netherlands. Geol Mijnbouw 78:1–19

    Article  Google Scholar 

  • Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol Isot Geosci Sect 79(2):155–182

    Article  Google Scholar 

  • Hansen S (1996) A compaction trend for Cretaceous and Tertiary shales on the Norwegian shelf based on sonic transit times. Petrol Geosci 2:159–166

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Heasler HP, Kharitonova NA (1996) Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin, Wyoming. AAPG Bull 80(5):630–646

    Google Scholar 

  • Hillis RR (1991) Chalk porosity and tertiary uplift, Western approaches trough, SW UK and NW French continental shelves. J Geol Soc Lond 148:669–679

    Article  Google Scholar 

  • Hillis RR (1993) Quantifying erosion in sedimentary basins from sonic velocities in shales and sandstones. Explor Geophys 24:561–566

    Article  Google Scholar 

  • Hillis RR, Thomson K, Underhill JR (1994) Quantification of tertiary erosion in the Inner Moray Firth using sonic velocity data from the chalk and the Kimmeridge clay. Mar Pet Geol 11(3):283–293

    Article  Google Scholar 

  • Japsen P (1993) Influence of lithology and Neogene uplift on seismic velocities in Denmark: implications for depth conversion of maps. AAPG Bull 77:194–211

    Google Scholar 

  • Japsen P (1994) Retarded compaction due to overpressure deduced from a seismic velocity/depth conversion study in the Danish Central Trough, North Sea. Mar Pet Geol 11(6):715–733

    Article  Google Scholar 

  • Japsen P (1998) Regional velocity-depth anomalies, North Sea chalk; a record of overpressure and Neogene uplift and erosion. AAPG Bull 82(11):2031–2074

    Google Scholar 

  • Japsen P (1999) Overpressured Cenozoic shale mapped from velocity anomalies relative to a baseline from marine shale, North Sea. Pet Geosci 5:321–336

    Article  Google Scholar 

  • Japsen P (2000) Investigation of multi-phase erosion using reconstructed shale trends based on sonic data; Sole Pit axis, North Sea. Glob Planet Change 24(3–4):189–210

    Article  Google Scholar 

  • Japsen P, Chalmers JA (2000) Neogene uplift and tectonics around the North Atlantic: overview. Glob Planet Change 24:165–173

    Article  Google Scholar 

  • Japsen P, Green PF, Nielsen LH, Rasmussen ES, Bidstrup T (2007) Mesozoic-Cenozoic exhumation events in the eastern North Sea Basin: a multi-disciplinary study based on palaeothermal, palaeoburial, stratigraphic and seismic data. Basin Res 19(4):451–490

    Article  Google Scholar 

  • Jeremiah JM, Duxbury S, Rawson P (2010) Lower Cretaceous of the southern North Sea Basins: reservoir distribution within a sequence stratigraphic framework. Neth J Geosci Geol Mijnbouw 89(3/4):203–237

    Article  Google Scholar 

  • Kenter JAM, Podladchikov FF, Reinders M, Van der Gaast SJ, Fouke BW, Sonnenfeld MD (1997) Parameters controlling sonic velocities in a mixed carbonate-siliciclastics Permian shelf-margin (upper San Andreas Formation, Last Chance Canyon, New Mexico). Geophysics 62(2):505–520

    Article  Google Scholar 

  • Luijendijk E, Van Balen RT, Ter Voorde M, Andriessen PAM (2011) Reconstructing the Late Cretaceous inversion of the Roer Valley Graben (southern Netherlands) using a new model that integrates burial and provenance history with fission track thermochronology. J Geophys Res 116:B06402

    Article  Google Scholar 

  • Magara K (1976) Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada basin. AAPG Bull 60:554–566

    Google Scholar 

  • Mallon AJ, Swarbrick RE (2002) A compaction trend for non-reservoir North Sea Chalk. Mar Pet Geol 19(5):527–539

    Article  Google Scholar 

  • Mathiesen A, Bidstrup T, Christiansen FG (2000) Denudation and uplift history of the Jameson Land Basin, East Greenland—constrained from maturity and apatite fission track data. Glob Planet Change 24:275–301

    Article  Google Scholar 

  • Monsen K (2001) Acoustic velocity in fractured rock. J Geophys Res 106(B7):13261–13267

    Article  Google Scholar 

  • Moos D, Zoback MD (1983) In situ studies of velocity in fractured crystalline rocks. J Geophys Res 88(B3):2345–2358

    Article  Google Scholar 

  • Nalpas T, Le Douaran S, Brun JP, Unternehr P, Richert JP (1995) Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale model investigation. Sed Geol 95:237–250

    Article  Google Scholar 

  • Nelskamp S, David P, Littke R (2008) A comparison of burial, maturity and temperature histories of selected wells from sedimentary basins in the Netherlands. Int J Earth Sci (Geol Rundsch) 97:931–953

    Article  Google Scholar 

  • Nelskamp S, Van Wees JD, Littke R (2012) Structural evolution, temperature, and maturity of sedimentary basins in the Netherlands: results of combined structural and thermal two-dimensional modeling. In Peters KE, Curry DJ, Kacewicz M (eds) Basin modeling: new horizons in research and applications: AAPG Hedberg Series, no 4, pp 137–156

  • Nyland B, Jensen LN, Skagen J, Skarpnes O, Vorren T (1992) Tertiary uplift and erosion in the Barents Sea: magnitude, timing and consequences. In: Larsen RM, Brekke H, Larsen BT, Talleraas E (eds) Structural and tectonic modelling and its application to petroleum geology. NPF Special Publication 1, Norwegian Petroleum Society (NPF), pp 153–162

  • Pluymaekers MPD, Kramers L, Van Wees JD, Kronimus RA, Nelskamp S, Boxem TAP, Bonté DDP (2012) Reservoir characterization of aquifers for direct heat production in mature oil and gas provinces: methodology and application to the Netherlands. Neth J Geosci 91–4:621–636

    Google Scholar 

  • Poix O (1998) Sonic anomalies, a measure to quantifying overpressures. Overpressures in petroleum exploration; Proc Workshop, Pau, April 1998. Bull. Centre Rech Elf Explor Prod Mém 22:207–211

  • Racero-Baena A, Drake SJ (1996) Structural style and reservoir development in the West Netherlands oil province. In: Rondeel HE, Batjes DAJ, Nieuwenhuijs WH (eds) Geology of gas and oil under the Netherlands. Royal Geological and Mining Society of the Netherlands (KNGMG). Kluwer Academic Publisher, Dordrecht, The Netherlands, pp 211–227

    Chapter  Google Scholar 

  • Richardsen G, Vorren TO, Tørudbakken BO (1993) Post-Early Cretaceous uplift and erosion in the southern Barents Sea: a discussion based on analysis of seismic interval velocities. Nor Geol Tidsskr 73:3–20

    Google Scholar 

  • Rohrman M, Van der Beek P, Andriessen P, Cloetingh S (1995) Meso-Cenozoic morphotectonic evolution of southern Norway: neogene domal uplift inferred from apatite fission track thermochronology. Tectonics 14:700–714

    Article  Google Scholar 

  • Scholle PA (1977) Chalk diagenesis and its relation to petroleum exploration; oil from chalks, a modern miracle? AAPG Bull 61:982–1009

    Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of post-mid-Cretaceous subsidence of the central North Sea Basin. J Geophys Res 85(B7):3711–3739

    Article  Google Scholar 

  • Skagen JI (1992) Methodology applied to uplift and erosion. Nor Geol Tidsskr 72:307–311

    Google Scholar 

  • Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74:1559–1570

    Google Scholar 

  • TNO-NITG (2002) Geological Atlas of the Subsurface of the Netherlands: explanation to mapsheets VII and VIII: Noordwijk-Rotterdam and Amsterdam-Gorinchem. Utrecht, 135 pp

  • Van Adrichem Boogaert HA, Kouwe WFP (1997) Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst, Haarlem

    Google Scholar 

  • Van Balen RT, Van Bergen F, de Leeuw C, Pagnier H, Simmelink H, Van Wees JD, Verweij JM (2000) Modelling the hydrocarbon generation and migration in the West Netherlands Basin, the Netherlands. Geologie en Mijnbouw/Neth J Geosci 79(1):29–44

    Google Scholar 

  • Van Wees JD, Kronimus A, Van Putten M, Pluymaekers M, Mijnlieff H, Van Hooff Obdam A, Kramers L (2012) Geothermal aquifer performance assessment for direct heat production. Methodology and application to Rotliegend aquifers. Neth J Geosci 91–94, 651–665:54

  • Van Wijhe DH (1987) Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137:171–219

    Article  Google Scholar 

  • Vernik L, Nur A (1992) Petrophysical classification of siliciclastics for lithology and porosity prediction from seismic velocities. AAPG Bull 76:1295–1309

    Google Scholar 

  • Verweij JM (2003) Fluid flow systems analysis on geological timescales in onshore and offshore Netherlands. Ph.D. Thesis, Netherlands Institute of Applied Geoscience TNO, Utrecht, The Netherlands, 278 p

  • Worum G, Michon L, Van Balen RT, Van Wees JD, Cloetingh SAPL, Pagnier HJM (2004) Pre-neogene controls on present-day fault activity in the West Netherlands Basin and Roer Valley Rift System (southern Netherlands): role of variations in fault orientation in a uniform low-stress regime. Quat Sci Rev Spec Publ 24:473–488

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe, second and completely revised edition. Shell Int Pet Mij, The Hague

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Diederik van Wees.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worum, G., van Wees, JD. High-resolution quantitative reconstruction of Late Cretaceous-Tertiary erosion in the West Netherlands Basin using multi-formation compaction trends and seismic data: implications for geothermal exploration. Acta Geod Geophys 52, 243–268 (2017). https://doi.org/10.1007/s40328-017-0196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-017-0196-6

Keywords

Navigation