Skip to main content
Log in

Long-range coherence between seismic noise properties in Japan and California before and after Tohoku mega-earthquake

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The coherences between daily time series of four low-frequency seismic noise properties which were calculated for 78 broadband seismic stations of the network F-net in Japan and 81 broadband seismic stations in California for 13 years of observation, 2003–2015, is investigated. The studied time interval includes Tohoku mega-earthquake, M9, on March 11, 2011. The chosen noise properties are the following: minimum normalized entropy of squared wavelet coefficients, multifractal singularity spectrum support width, generalized Hurst exponent and index of linear predictability. These properties were estimated daily as median values taken over all stations of the networks. For each pair of these noise properties from Japan and California squared coherence spectrums were estimated within moving time window of the length 730 days. The maximum values of squared coherence spectra for periods more than 20 days were essentially increasing as the time window approaches the time moment of Tohoku mega-earthquake and achieved their maximum values for position of moving time window strictly before the seismic catastrophe. This fact is interpreted as a consequence of general global seismic noise synchronization before huge seismic catastrophe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Box GEP, Jenkins GM (1970) Time series analysis. Forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Currenti G, del Negro C, Lapenna V, Telesca L (2005) Multifractality in local geomagnetic field at Etna volcano, Sicily (southern Italy). Nat Hazards Earth Syst Sci 5:555–559. doi:10.5194/nhess-5-555-2005

    Article  Google Scholar 

  • Feder J (1988) Fractals. Plenum Press, New York

    Book  Google Scholar 

  • Gilmore R (1981) Catastrophe theory for scientists and engineers. Wiley, New York

    Google Scholar 

  • Ida Y, Hayakawa M, Adalev A, Gotoh K (2005) Multifractal analysis for the ULF geomagnetic data during the 1993 Guam earthquake. Nonlinear Process Geophys 12:157–162. doi:10.5194/npg-12-157-2005

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Konscienly-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316:87–114. doi:10.1016/s0378-4371(02)01383-3

    Article  Google Scholar 

  • Kashyap RL, Rao AR (1976) Dynamic stochastic models from empirical data. Academic Press, New York

    Google Scholar 

  • Kobayashi N, Nishida K (1998) Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395:357–360. doi:10.1038/26427

    Article  Google Scholar 

  • Lyubushin AA (1998) Analysis of canonical coherences in the problems of geophysical monitoring. Izv Phys Solid Earth 34(1):52–58

    Google Scholar 

  • Lyubushin AA (1999) Analysis of multidimensional geophysical monitoring time series for earthquake prediction. Ann Geofis 42(5):927–937. doi:10.4401/ag-3757

    Google Scholar 

  • Lyubushin AA (2008) Microseismic noise in the low frequency range (periods of 1–300 min): properties and possible prognostic features. Izv Phys Solid Earth 44(4):275–290. doi:10.1134/S1069351308040022

    Article  Google Scholar 

  • Lyubushin AA (2009) Synchronization trends and rhythms of multifractal parameters of the field of low-frequency microseisms. Izv Phys Solid Earth 45(5):381–394. doi:10.1134/S1069351309050024

    Article  Google Scholar 

  • Lyubushin A (2010) Multifractal parameters of low-frequency microseisms. In: de Rubeis V et al. (ed) Synchronization and triggering: from fracture to earthquake processes. GeoPlanet: Earth Planet Sci 1, doi:10.1007/978-3-642-12300-9_15. Springer, Berlin 2010, Chapter 15, pp 253–272

  • Lyubushin AA (2011a) Cluster analysis of low-frequency microseismic noise. Izv Phys Solid Earth 47(6):488–495. doi:10.1134/S1069351311040057

    Article  Google Scholar 

  • Lyubushin AA (2011b) Seismic catastrophe in Japan on March 11, 2011: long-term prediction on the basis of low-frequency microseisms. Izv Atmos Ocean Phys 46(8):904–921. doi:10.1134/S0001433811080056

    Article  Google Scholar 

  • Lyubushin A (2012) Prognostic properties of low-frequency seismic noise. Nat Sci 4:659–666. doi:10.4236/ns.2012.428087

    Google Scholar 

  • Lyubushin AA (2013a) Mapping the properties of low-frequency microseisms for seismic hazard assessment. Izv Phys Solid Earth 49(1):9–18. doi:10.1134/S1069351313010084

    Article  Google Scholar 

  • Lyubushin A (2013b) How soon would the next mega-earthquake occur in Japan? Nat Sci 5(8A1):1–7. doi:10.4236/ns.2013.58A1001

    Google Scholar 

  • Lyubushin AA (2014a) Analysis of coherence in global seismic noise for 1997–2012. Izv Phys Solid Earth 50(3):325–333. doi:10.1134/S1069351314030069

    Article  Google Scholar 

  • Lyubushin AA (2014b) Dynamic estimate of seismic danger based on multifractal properties of low-frequency seismic noise. Nat Hazards 70(1):471–483. doi:10.1007/s11069-013-0823-7

    Article  Google Scholar 

  • Lyubushin AA (2015) Wavelet-based coherence measures of global seismic noise properties. J Seismol 19(2):329–340. doi:10.1007/s10950-014-9468-6

    Article  Google Scholar 

  • Lyubushin AA, Klyashtorin LB (2012) Short term global dT prediction using (60-70)-years periodicity. Energy Environ 23(1):75–85. doi:10.1260/0958-305X.23.1.75

    Article  Google Scholar 

  • Lyubushin AA, Pisarenko VF, Bolgov MV, Rodkin MV, Rukavishnikova TA (2004) Synchronous variations in the Caspian Sea level from coastal observations in 1977–1991. Atmos Ocean Phys 40(6):737–746

    Google Scholar 

  • Lyubushin AA, Kaláb Z, Lednická M (2012) Geomechanical time series and its singularity spectrum analysis. Acta Geod Geophys Hung 47(1):69–77. doi:10.1556/AGeod.47.2012.1.6

    Article  Google Scholar 

  • Lyubushin AA, Kaláb Z, Lednická M (2014) Statistical properties of seismic noise measured in underground spaces during seismic swarm. Acta Geod et Geophys 49(2):209–224. doi:10.1007/s40328-014-0051-y

    Article  Google Scholar 

  • Lyubushin AA, Kaláb Z, Lednická M, Knejzlik J (2015) Coherence spectra of rotational and translational components of mining induced seismic events. Acta Geod et Geophys. doi:10.1007/s40328-015-0099-3

    Google Scholar 

  • Mallat S (1998) A wavelet tour of signal processing. Academic, San Diego, p 577

    Google Scholar 

  • Marple SL Jr (1987) Digital spectral analysis with applications. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Nicolis G, Prigogine I (1989) Exploring complexity, an introduction. W.H. Freedman and Co., New York

    Google Scholar 

  • Ramirez-Rojas A, Munoz-Diosdado A, Pavia-Miller CG, Angulo-Brown F (2004) Spectral and multifractal study of electroseismic time series associated to the Mw = 6.5 earthquake of 24 October 1993 in Mexico. Nat Hazards Earth Syst Sci 4:703–709

    Article  Google Scholar 

  • Rhie J, Romanowicz B (2004) Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling. Nature 431:552–554. doi:10.1038/nature02942

    Article  Google Scholar 

  • Tanimoto T (2001) Continuous free oscillations: atmosphere-solid earth coupling. Annu Rev Earth Planet Sci 29:563–584

    Article  Google Scholar 

  • Tanimoto T (2005) The oceanic excitation hypothesis for the continuous oscillations of the Earth. Geophys J Int 160:276–288. doi:10.1111/j.1365-246X.2004.02484.x

    Article  Google Scholar 

  • Taqqu MS (1988) Self-similar processes. Encyclopedia of statistical sciences, vol 8. Wiley, New York, pp 352–357

    Google Scholar 

  • Telesca L, Colangelo G, Lapenna V (2005) Multifractal variability in geoelectrical signals and correlations with seismicity: a study case in southern Italy. Nat Hazards Earth Syst Sci 5:673–677

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by Russian Foundation for Basic Research (Project No. 15-05-00414) and the Ministry of Education and Science of the Russian Federation (in accordance with the requirements of the Contract No. 14.577.21.0109)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lyubushin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubushin, A.A. Long-range coherence between seismic noise properties in Japan and California before and after Tohoku mega-earthquake. Acta Geod Geophys 52, 467–478 (2017). https://doi.org/10.1007/s40328-016-0181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-016-0181-5

Keywords

Navigation