Skip to main content
Log in

A game theoretical approximation for solutions to nonlinear systems with obstacle-type equations

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is an obstacle type equation, \(\min \{-\Delta ^1_{\infty }u(x),(u-v)(x)\}=0\), and the second one is \(- \displaystyle \Delta v(x) + v(x) - u(x)=h(x)\) in \(\Omega \) a smooth bounded domain with Dirichlet boundary conditions \(u(x) = f(x)\), \(v(x) = g(x)\) for \(x \in \partial \Omega \). Here \(-\Delta ^1_{\infty }u\) is the \(\infty -\)Laplacian and \(-\Delta v\) is the standard Laplacian. This system is not variational and involves two different elliptic operators. Notice that in the first equation the obstacle is given by the second component of the system that also depends on the first component via the second equation (this system is fully coupled). We prove that there is a two-player zero-sum game played in two different boards with different rules in each board. In the first one one of the players decides to play a round of a Tug-of-War game or to change boards and in the second board we play a random walk with the possibility of changing boards with a positive (but small) probability and a running payoff. We show that this game has two value functions (one for each board) that converge uniformly to the components of a viscosity solution to the PDE system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antunovic, T., Peres, Y., Sheffield, S., Somersille, S.: Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition. Commun. Partial Differ. Equ. 37(10), 1839–1869 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arroyo, A., Llorente, J.G.: On the asymptotic mean value property for planar p-harmonic functions. Proc. Am. Math. Soc. 144(9), 3859–3868 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong, S.N., Smart, C.K.: An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 37(3–4), 381–384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41, 439–505 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barles, G., Busca, J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Commun. Partial Differ. Equ. 26(11–12), 2323–2337 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanc, P., Charro, F., Rossi, J.D., Manfredi, J.J.: A nonlinear mean value property for the Monge–Ampère operator. J. Convex Anal. JOCA. 28(2), 353–386 (2021)

    MATH  Google Scholar 

  7. Blanc, P., Esteve, C., Rossi, J.D.: The evolution problem associated with eigenvalues of the Hessian. J. Lond. Math. Soc. 102(3), 1293–1317 (2020)

  8. Blanc, P., Pinasco, J.P., Rossi, J.D.: Maximal operators for the \(p-\)Laplacian family. Pacific J. Math. 287(2), 257–295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanc, P., Rossi, J.D.: Games for eigenvalues of the Hessian and concave/convex envelopes. J. Math. Pures et Appliquees. 127, 192–215 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanc, P., Rossi, J.D.: Game Theory and Partial Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications. Vol. 31. (2019). ISBN 978-3-11-061925-6. ISBN 978-3-11-062179-2 (eBook)

  11. Charro, F., Garcia Azorero, J., Rossi, J.D.: A mixed problem for the infinity laplacian via Tug-of-War games. Calc. Var. Partial Differ. Equ. 34(3), 307–320 (2009)

  12. Crandall, M.G., A visit with the \(\infty \)-Laplace equation, Calculus of variations and nonlinear partial differential equations. Lecture Notes in Math., Vol.: Springer, Berlin 2008, 75–122 (1927)

  13. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doob, J.L.: What is a martingale? Am. Math. Monthly 78(5), 451–463 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Classics in Mathematics. Springer, New York (2001)

  16. Doob, J.L.: Semimartingales and subharmonic functions. Trans. Am. Math. Sot. 77, 86–121 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hunt, G.A.: Markoff processes and potentials I, II, III. IL. J. Math. 1, 44–93, 316–369 (1957); ibid. 2, 151–213 (1958)

  18. Ishiwata, M., Magnanini, R., Wadade, H.: A natural approach to the asymptotic mean value property for the p-Laplacian. Calc. Var. Partial Differ. Equ. 56(4), Art. 97, 22 (2017)

  19. Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123(1), 51–74 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kac, M.: Random walk and the theory of Brownian motion. Am. Math. Monthly 54(7), 369–391 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kakutani, S.: Two-dimensional Brownian motion and harmonic functions. Proc. Imp. Acad. Tokyo 20, 706–714 (1944)

    MathSciNet  MATH  Google Scholar 

  22. Kawohl, B., Manfredi, J.J., Parviainen, M.: Solutions of nonlinear PDEs in the sense of averages. J. Math. Pures Appl. 97(3), 173–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Knapp, A.W.: Connection between Brownian Motion and Potential Theory. J. Math. Anal. Appl. 12, 328–349 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lewicka, M.: A Course on Tug-of-War Games with Random Noise. Introduction and Basic Constructions. Universitext book series, Springer, New York (2020)

  25. Lewicka, M., Manfredi, J.J.: The obstacle problem for the p-laplacian via optimal stopping of tug-of-war games. Prob. Theory Rel. Fields 167(1–2), 349–378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindqvist, P., Manfredi, J.J.: On the mean value property for the \(p-\)Laplace equation in the plane. Proc. Am. Math. Soc. 144(1), 143–149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Q., Schikorra, A.: General existence of solutions to dynamic programming principle. Commun. Pure Appl. Anal. 14(1), 167–184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luiro, H., Parviainen, M., Saksman, E.: Harnack’s inequality for p-harmonic functions via stochastic games. Commun. Partial Differ. Equ. 38(11), 1985–2003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for p-harmonic functions. Proc. Am. Math. Soc. 138(3), 881–889 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Manfredi, J.J., Parviainen, M., Rossi, J.D.: Dynamic programming principle for tug-of-war games with noise. ESAIM Control Opt. Calc. Var. 18, 81–90 (2012)

  31. Manfredi, J.J., Parviainen, M., Rossi, J.D.: On the definition and properties of p-harmonious functions. Ann. Scuola Nor. Sup. Pisa 11, 215–241 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM J. Math. Anal. 42(5), 2058–2081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Manfredi, J.J., Rossi, J.D., Somersille, S.J.: An obstacle problem for tug-of-war games. Commun. Pure Appl. Anal. 14(1), 217–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miranda, A., Rossi, J.D.: A game theoretical approach for a nonlinear system driven by elliptic operators. SN Partial Differ. Equ. Appl. 1(4), art. 14, 41 (2020)

  35. Miranda, A., Rossi, J.D.: A game theoretical approximation for a parabolic/elliptic system with different operators. arXiv:2106.14088 (2021)

  36. Mitake, H., Tran, H.V.: Weakly coupled systems of the infinity Laplace equations. Trans. Am. Math. Soc. 369, 1773–1795 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peres, Y., Sheffield, S.: Tug-of-war with noise: a game theoretic view of the \(p\)-Laplacian. Duke Math. J. 145(1), 91–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rossi, J.D.: Tug-of-war games and PDEs. Proc. R. Soc. Edinburgh 141A, 319–369 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Partially supported by CONICET grant PIP GI No 11220150100036CO (Argentina), PICT-2018-03183 (Argentina) and UBACyT grant 20020160100155BA (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio D. Rossi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, A., Rossi, J.D. A game theoretical approximation for solutions to nonlinear systems with obstacle-type equations. SeMA 80, 201–244 (2023). https://doi.org/10.1007/s40324-022-00292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-022-00292-3

Keywords

Mathematics Subject Classification

Navigation