Skip to main content
Log in

The fundamental group of a rigid Lagrangian cobordism

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

In this article we extend the construction of the Floer fundamental group to the monotone Lagrangian setting (for weakly exact or monotone Lagrangians with large minimal Maslov number) and use it to study the fundamental group of a Lagrangian cobordism \(W\subset (\mathbb {C}\times M, \omega _{st}\oplus \omega )\) between two Lagrangian submanifolds \(L, L'\subset ( M, \omega )\). We show that under natural conditions the inclusions \(L,L'\hookrightarrow W\) induce surjective maps \(\pi _{1}(L)\twoheadrightarrow \pi _{1}(W)\), \(\pi _{1}(L')\twoheadrightarrow \pi _{1}(W)\) and when the previous maps are injective then W is an h-cobordism. In particular, in dimension at least 6, W is topologically trivial in this case.

Résumé

Dans cet article, nous prolongeons la construction du groupe fondamental de Floer au cadre lagrangien monotone (faiblement exact ou monotone avec nombre de Maslov minimal suffisemment grand) et l’utilisons pour étudier le groupe fondamental d’un cobordisme lagrangien \(W\subset (\mathbb {C}\times M, \omega _{st}\oplus \omega )\) entre deux sous-variétés lagrangiennes \(L, L'\subset ( M, \omega )\). Nous montrons que dans des conditions naturelles les inclusions \(L,L'\hookrightarrow W\) induisent des applications surjectives \(\pi _{1}(L)\twoheadrightarrow \pi _{1}(W)\), \(\pi _{1}(L')\twoheadrightarrow \pi _{1}(W)\) et quand les applications précédentes sont injectives W est un h-cobordisme. En particulier, en dimension au moins 6, W est topologiquement trivial dans ce cas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A pair of monotone Lagrangians is uniformly monotone if the \(\mathbb {Z}_{2}\)-counts of Maslov two J-holomorphic discs through a generic point agree.

  2. A Lagrangian L is wide (see, [15, Definition 1.2.1]) if there exists an isomorphism \(QH(L)\cong H_{*}(L; \mathbb {Z}_{2})\otimes \mathbb {Z}_{2}[t^{-1}, t]\), between the quantum homology and the singular homology of L .

  3. To define a version of the Floer complex with \(\mathbb {Z}[\pi _{1}(W)]\)-coefficients, it is enough to consider a spin Lagrangian. We use the conventions for orientations in [22, Appendix A], that in particular imply that the orientations for Morse complex and pearl complex coincide.

References

  1. Barraud, J.F.: A Floer fundamental group. Annales Scientifiques de l’École Normale Supérieure. 51, 773–809 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.: Lagrange and Legendre cobordisms I. Funktsional. Anal. I Prilozhen. 14(3), 1–13 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, V.L.: Lagrange and Legendre cobordisms II. Funktsional. Anal. I Prilozhen. 14(4), 8–17 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Eliashberg, Y.: Eliashberg, J.: Cobordisme des solutions de relations différentielles. South Rhone seminar on geometry, I (Lyon, 1983). Travaux en Cours, pp. 17–31. Hermann, Paris (1984)

  5. Audin, M.: Quelques calculs en cobordisme lagrangien. Ann. Inst. Fourier 35(3), 159–194 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chekanov, Y.V.: Lagrangian embeddings and Lagrangian cobordism. Topics in singularity theory. American Mathematical Society Translations: Series 2, vol. 180, pp. 13–23. American Mathematical Society, Providence, RI (1997). https://doi.org/10.1090/trans2/180/02

  7. Biran, P., Cornea, O.: Lagrangian cobordism. I. J. Am. Math. Soc. 26(2), 295–340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biran, P., Cornea, O.: Lagrangian cobordism and Fukaya category. Geom. Funct. Anal. 24(6), 1016–1830 (2014)

    Article  MATH  Google Scholar 

  9. Polterovich, L.: Symplectic displacement energy for Lagrangian submanifolds. Ergod. Theory Dyn. Syst. 13(2), 357367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lalonde, F., Sikorav, J.-C.: Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents. Commentarii mathematici Helvetici 66(1), 18–33 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Polterovich, L.: The surgery of Lagrange submanifolds. Geom. Funct. Anal 1(2), 198–210 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haug, L.: Lagrangian antisurgery. arXiv:1511.05052, (2015)

  13. Mak, C.Y., Wu, W.: Dehn twists exact sequences through Lagrangian cobordism. arXiv:1509.08028v2

  14. Biran, P., Cornea, O.: Quantum structures for Lagrangian submanifolds. Preprin arXiv:0708.4221

  15. Biran, P., Cornea, O.: Rigidity and uniruling for Lagrangian submanifolds. Geom. Topol. 13(5), 2881–2989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chantraine, B., Dimitroglou Rizell, G., Ghiggini, P., Golovko, R.: Floer homology and Lagrangian concordance. Proceedings of the Gökova Geometry-Topology Conference 2014, pages 76–113, (2015)

  17. Suarez, L.S.: Exact Lagrangian cobordism and pseudo-isotopy. Intern. J. Math. 28(8), 1750059 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abouzaid, M.: Nearby Lagrangians with vanishing Maslov class are homotopy equivalent. Invent. Math. 189(2), 251–313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kragh, T.: Parametrized ring-spectra and the nearby Lagrangian conjecture. Geom. Topol. 17 (2), 639–731 (2013). https://doi.org/10.2140/gt.2013.17.639

  20. Floer, A., Hofer, Y., Salamon, D.: Transversallity in elliptic Morse theory for the symplectic action. Duke Math. J. 80, 251–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seidel, P.: The equivariant pair-of-pants product in fixed point Floer cohomology. Geom. Funct. Anal. 25(3), 942–1007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Biran, P., Cornea, O.: Lagrangian topology and enumerative geometry. Geom. Topol. 16(2), 963–1052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zapolsky, F.: The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory. Preprint arXiv:1507.02253

Download references

Acknowledgements

We thank the unknown referee for helpful comments. L. S. Suárez thanks Egor Shelukhin for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Simone Suárez.

Additional information

Lara Simone Suárez was supported by the funding from the European Communitys Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) under Grant Agreement No. [258204]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barraud, JF., Suárez, L.S. The fundamental group of a rigid Lagrangian cobordism. Ann. Math. Québec 43, 125–144 (2019). https://doi.org/10.1007/s40316-018-0109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-018-0109-2

Keywords

Mathematics Subject Classification

Navigation