Skip to main content
Log in

Even Galois representations and the cohomology of \(\mathrm{GL}(2,\mathbb Z)\)

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

Let \(\rho \) be an even two-dimensional representation of the Galois group \({{\mathrm{Gal}}}(\overline{\mathbb Q}/\mathbb Q)\) which is induced from a character \(\chi \) of odd order of the absolute Galois group of a real quadratic field K. After imposing some additional conditions on \(\chi \), we attach \(\rho \) to a Hecke eigenclass in the cohomology of \(\mathrm{GL}(2,\mathbb Z)\) with coefficients in a certain infinite-dimensional vector space V over an arbitrary field of characteristic not equal to 2. The space V is defined purely algebraically starting from the field K.

Résumé

Soit \(\rho \) une représentation de degré 2 du groupe de Galois \({{\mathrm{Gal}}}(\overline{\mathbb Q}/\mathbb Q)\) et de déterminant pair. On suppose que \(\rho \) est induite par un caractère \(\chi \) d’ordre impair appartenant à un corps quadratique réel. Avec conditions additionnelles sur \(\chi \), on démontre que \(\rho \) est attachée a un vecteur propre des opérateurs de Hecke dans la cohomologie de \(\mathrm{GL}(2,\mathbb Z)\) avec coefficients dans un certain espace vectoriel V de dimension infinie sur un corps quelconque de caractéristique non égale a 2. Cet espace V est construit purement algébriquement à partir du corps K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serre, J.P.: Sur les représentations modulaires de degré \(2\) de \({\rm Gal}(\overline{Q}/{ Q})\). Duke Math. J. 54(1), 179–230 (1987). https://doi.org/10.1215/S0012-7094-87-05413-5

    Article  MathSciNet  Google Scholar 

  2. Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009). https://doi.org/10.1007/s00222-009-0205-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. II. Invent. Math. 178(3), 505–586 (2009). https://doi.org/10.1007/s00222-009-0206-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Kisin, M.: Modularity of 2-adic Barsotti-Tate representations. Invent. Math. 178(3), 587–634 (2009). https://doi.org/10.1007/s00222-009-0207-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Ash, A., Doud, D., Pollack, D.: Galois representations with conjectural connections to arithmetic cohomology. Duke Math. J. 112(3), 521–579 (2002). https://doi.org/10.1215/S0012-9074-02-11235-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Ash, A., Sinnott, W.: An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod \(p\) cohomology of \({\rm GL}(n,{ Z})\). Duke Math. J. 105(1), 1–24 (2000). https://doi.org/10.1215/S0012-7094-00-10511-X

    Article  MathSciNet  MATH  Google Scholar 

  7. Herzig, F.: The weight in a Serre-type conjecture for tame \(n\)-dimensional Galois representations. Duke Math. J. 149(1), 37–116 (2009). https://doi.org/10.1215/00127094-2009-036

    Article  MathSciNet  MATH  Google Scholar 

  8. Scholze, P.: On torsion in the cohomology of locally symmetric varieties. Ann. of Math. (2) 182(3), 945–1066 (2015). https://doi.org/10.4007/annals.2015.182.3.3

    Article  MathSciNet  MATH  Google Scholar 

  9. Harris, M., Lan, K.W., Taylor, R., Thorne, J.: On the rigid cohomology of certain Shimura varieties. Res. Math. Sci. 3(37), 1–308 (2016). https://doi.org/10.1186/s40687-016-0078-5

    MathSciNet  MATH  Google Scholar 

  10. Caraiani, A., Le Hung, B.V.: On the image of complex conjugation in certain Galois representations. Compos. Math. 152(7), 1476–1488 (2016). https://doi.org/10.1112/S0010437X16007016

    Article  MathSciNet  MATH  Google Scholar 

  11. Ash, A., Doud, D.: Reducible Galois representations and the homology of \({\rm GL}(3,\mathbb{Z})\). Int. Math. Res. Not. IMRN 5, 1379–1408 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruggeman, R., Lewis, J., Zagier, D.: Period functions for Maass wave forms and cohomology. Mem. Amer. Math. Soc. 237(1118), xii+132 (2015). https://doi.org/10.1090/memo/1118

    MathSciNet  MATH  Google Scholar 

  13. Lewis, J., Zagier, D.: Period functions for Maass wave forms. I. Ann. of Math. (2) 153(1), 191–258 (2001). https://doi.org/10.2307/2661374

    Article  MathSciNet  MATH  Google Scholar 

  14. Ash, A.: Parabolic cohomology of arithmetic subgroups of \({\rm SL}(2,{ Z})\) with coefficients in the field of rational functions on the Riemann sphere. Amer. J. Math. 111(1), 35–51 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brown, K.S.: Cohomology of groups, Graduate Texts in Mathematics, vol. 87. Springer, New York, Berlin (1982)

  16. Casselman, B.: The Bruhat-Tits tree of SL(2). Unpublished. Available from https://www.math.ubc.ca/~cass/research/pdf/Tree.pdf (2014). Accessed 5 Sept 2014

  17. Serre, J.P.: Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2003). Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation

  18. Weil, A.: Basic number theory. Classics in Mathematics. Springer, Berlin (1995). Reprint of the second (1973) edition

    Google Scholar 

  19. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995). https://doi.org/10.1007/978-1-4612-5350-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrin Doud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ash, A., Doud, D. Even Galois representations and the cohomology of \(\mathrm{GL}(2,\mathbb Z)\). Ann. Math. Québec 43, 1–35 (2019). https://doi.org/10.1007/s40316-018-0104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-018-0104-7

Keywords

Mathematics Subject Classification

Navigation