Skip to main content
Log in

A note on the Davison–Man method for Sylvester matrix equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a modernized and improved version of the Davison–Man method for the numerical resolution of Sylvester matrix equations. In the case of moderate size problems, we give some background facts about this iterative method, addressing the problem of stagnation and we propose an iterative refinement technique to improve its accuracy. Although not designed to solve large-scale Sylvester equations, we propose an approach combining the extended block Krylov algorithm and the Davison–Man method which gives interesting results in terms of accuracy and shows to be competitive with the classical Krylov subspaces methods. Numerical examples are given to illustrate the efficiency of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archid A, Bentbib AH (2014) Approximation of the matrix exponential operator by a structure-preserving block Arnoldi-type method. Appl Numer Math 75:37–47

    Article  MathSciNet  MATH  Google Scholar 

  • Bao L, Lin Y, Wei Y (2007) A new projection method for solving large Sylvester equations. Appl Numer Math 57(5–7):521–532

    Article  MathSciNet  MATH  Google Scholar 

  • Bartels RH, Stewart GW (1972) Solution of the matrix equation \(AX+XB=C\) algorithm 432. Commun ACM 15:820–826

    Article  Google Scholar 

  • Baur U (2008) Low rank solution of data-sparse Sylvester equations. Numer Linear Algebra Appl 15(9):837–851

  • Beckermann B (2012) An error analysis for rational Galerkin projection applied to the Sylvester equation. SIAM J Numer Anal 49:2430–2450

    Article  MathSciNet  MATH  Google Scholar 

  • Bellalij M, Saad Y, Sadok H (2008) Analysis of some Krylov subspace methods for normal matrices via approximation theory and convex optimization. Electron Trans Numer Anal 33:17–30

    MathSciNet  MATH  Google Scholar 

  • Benner P, Li RC, Truhar N (2009) On the ADI method for Sylvester equations. J Comput Appl Math 233:1035–1045

    Article  MathSciNet  MATH  Google Scholar 

  • Benner P, Kürschner P (2014) Computing real low-rank solutions of Sylvester equations by the factored ADI method. Comput Math Appl 67:1656–1672

    Article  MathSciNet  Google Scholar 

  • Bhatia R, Rosenthal P (1997) How and why to solve the operator equation \(AX-XB = Y\). Bull Lond Math Soc 29:1–21

    MathSciNet  MATH  Google Scholar 

  • Bouhamidi A, Hached M, Jbilou K (2013) A preconditioned block Arnoldi method for large Sylvester matrix equations. Numer Linear Algebra Appl 20:208–219

    Article  MathSciNet  MATH  Google Scholar 

  • Chehab JP, Raydan M (2011) An implicit preconditioning strategy for large-scale generalized Sylvester equations. Appl Math Comput 217:8793–8803

    MathSciNet  MATH  Google Scholar 

  • Datta BN (2003) Numerical methods for linear control systems design and analysis. Elsevier Academic Press, New York

    Google Scholar 

  • Datta BN, Datta K (1986) Theoretical and computational aspects of some linear algebra problems in control theory. In: Byrnes CI, Lindquist A (eds) Computational and combinatorial methods in systems theory. Elsevier, Amsterdam, pp 201–212

    Google Scholar 

  • Davison EJ, Man FT (1968) The numerical solution of \(A^{\prime }Q+QA=-C\). IEEE Trans Autom Control AC–13(4):448–449

    Article  MathSciNet  Google Scholar 

  • Deif AS, Seif NP, Hussein SA (1995) Sylvester’s equation: accuracy and computational stability. J Comput Appl Math 61(1):1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Druskin V, Knizhnerman L, Simoncini V (2011) Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J Matrix Anal Appl 49:1875–1898

    MathSciNet  MATH  Google Scholar 

  • Druskin V, Knizhnerman L (1998) Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J Matrix Anal Appl 19(3):755–771

    Article  MathSciNet  MATH  Google Scholar 

  • El Guennouni A, Jbilou K, Riquet AJ (2002) Block Krylov subspace methods for solving large Sylvester equations. Numer Algorithms 29:75–96

    Article  MathSciNet  MATH  Google Scholar 

  • Golub GH, Nash S, Van Loan C (1979) A Hessenberg-Schur method for the problem \( AX+XB=C \). IEEE Trans Autom Control AC 4:909–913

    Article  MathSciNet  MATH  Google Scholar 

  • Golub GH, Van Loan CF (1983) Matrix computation. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Heyouni M (2010) Extended Arnoldi methods for large low-rank Sylvester matrix equations, applied numerical mathematics. In: Special issue: 9th IMACS international symposium on iterative methods in scientific computing (IISIMSC 2008), vol 60, pp 1171–1182

  • Higham NJ (2005) The scaling and squaring method for the matrix exponential revisited. SIAM J Matrix Anal Appl 26(4):1179–1193

    Article  MathSciNet  MATH  Google Scholar 

  • Hu DY, Reichel L (1992) Krylov subspace methods for the Sylvester equation. Linear Algebra Appl 174:283–314

  • Jaimoukha IM, Kasenally EM (1994) Krylov subspace methods for solving large Lyapunov equations. SIAM J Matrix Anal Appl 31:227–251

    MathSciNet  MATH  Google Scholar 

  • Jbilou K (2003) Block Krylov subspace methods for large continuous-time algebraic Riccati equations. Numer Algorithms 34:339–353

    Article  MathSciNet  MATH  Google Scholar 

  • Jbilou K (2006) Low rank approximate solutions to large Sylvester matrix equations. Appl Math Comput 177:365–376

    MathSciNet  MATH  Google Scholar 

  • Jbilou K (2010) ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra Appl 432:2473–2485

    Article  MathSciNet  MATH  Google Scholar 

  • Jbilou K, Sadkane M (2014) The Davison–Man method revisited and extended. Tecnical report, LMPA

  • Jódar L (1996) Lyapunov matrix equation in system stability and control (Zoran Gajic and Muhammad Tahir Javed Qureshi). SIAM Rev 38(4):691–691

    Article  Google Scholar 

  • Moler CB (1967) Iterative refinement in floating point. J ACM 14(2):316–321

    Article  MATH  Google Scholar 

  • Moler CB, Van Loan CF (2003) Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev 45:3–49

    Article  MathSciNet  MATH  Google Scholar 

  • Penzl T (2000) A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J Sci Comput 21:1401–1418

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts JD (1980) Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int J Control 32:677–687 (reprint of technical report no. TR-13, CUED/B-control, Cambridge University, Engineering Department, 1971)

  • Saad Y (1990) Numerical solution of large Lyapunov equations. In: Kaashoek MA, Van Shuppen JH, Ran AC (eds) Signal processing, scattering, operator theory and numerical methods. Birkhaser, Boston, pp 503–511

  • Simoncini V (1996) On the numerical solution of \(AX - XB = C\). BIT 36(4):814–830

    Article  MathSciNet  MATH  Google Scholar 

  • Simoncini V (2007) A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J Sci Comput 29:1268–1288

    Article  MathSciNet  MATH  Google Scholar 

  • Smith R (1968) Matrix equation \(XA + BX = C\). SIAM J Appl Math 16:198–201

    Article  MathSciNet  MATH  Google Scholar 

  • Sorensen DC, Zhou Y (2003) Direct methods for matrix Sylvester and Lyapunov equations. J Appl Math 6:277–303

    Article  MathSciNet  MATH  Google Scholar 

  • Van Dooren P (2000) Grammian based model reduction of large scale-dynamical systems, in numerical analysis. Chapman and Hall, CRC Press, London

    Google Scholar 

  • Wilkinson J (1963) Rounding errors in algebraic processes. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hached.

Additional information

Communicated by Jinyun Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hached, M. A note on the Davison–Man method for Sylvester matrix equations. Comp. Appl. Math. 36, 561–570 (2017). https://doi.org/10.1007/s40314-015-0244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0244-1

Keywords

Mathematics Subject Classification

Navigation