Skip to main content
Log in

Inflammation and Vascular Ageing: From Telomeres to Novel Emerging Mechanisms

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) remains the leading cause of morbility and mortality worldwide. The identification of common cardiovascular risk factors has led to the development of effective treatments that enabled a significant reduction of the global cardiovascular disease burden. However, a significant proportion of cardiovascular risk remains unexplained by these risk factors leaving many individuals at risk of cardiovascular events despite good control of the risk factors. Recent randomized clinical trials and Mendelian randomization studies have suggested that inflammation explains a significant proportion of the residual cardiovascular risk in subjects with good control of risk factors. An accelerated process of vascular ageing is increasingly recognized as a potential mechanism by which inflammation might increase the risk of CVD. In turn, cellular ageing represents an important source of inflammation within the vascular wall, potentially creating a vicious cycle that might promote progression of atherosclerosis, independently from the individual cardiovascular risk factor burden. In this review, we summarise current evidence suggesting a role for biological ageing in CVD and how inflammation might act as a key mediator of this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Franceschi C, et al. Inflammaging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  2. Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatr Soc. 1993;41(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  3. Bruunsgaard H, et al. A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci. 1999;54(7):M357–64.

    Article  CAS  PubMed  Google Scholar 

  4. Hager K, et al. Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neurobiol Aging. 1994;15(6):771–2.

    Article  CAS  PubMed  Google Scholar 

  5. Paolisso G, et al. Advancing age and insulin resistance: role of plasma tumor necrosis factor-alpha. Am J Physiol. 1998;275(2 Pt 1):E294–9.

    CAS  PubMed  Google Scholar 

  6. Cohen HJ, et al. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci. 1997;52(4):M201–8.

    Article  CAS  PubMed  Google Scholar 

  7. Fagiolo U, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrucci L, et al. The origins of age-related proinflammatory state. Blood. 2005;105(6):2294–9.

    Article  CAS  PubMed  Google Scholar 

  9. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73.

    Article  CAS  PubMed  Google Scholar 

  10. Rossiello F, et al. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs. Nat Commun. 2017;8:13980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Astrup AS, et al. Telomere length predicts all-cause mortality in patients with type 1 diabetes. Diabetologia. 2010;53(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bakaysa SL, et al. Telomere length predicts survival independent of genetic influences. Aging Cell. 2007;6(6):769–74.

    Article  CAS  PubMed  Google Scholar 

  13. Cawthon RM, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.

    Article  CAS  PubMed  Google Scholar 

  14. Deelen J, et al. Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol. 2014;43(3):878–86.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brouilette SW, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case–control study. Lancet. 2007;369(9556):107–14.

    Article  CAS  PubMed  Google Scholar 

  16. Gardner JP, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.

    Article  CAS  PubMed  Google Scholar 

  17. Zhan Y, et al. Telomere length shortening and alzheimer disease—a Mendelian randomization study. JAMA Neurol. 2015;72(10):1202–3.

    Article  PubMed  Google Scholar 

  18. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  CAS  PubMed  Google Scholar 

  19. Aviv A. Leukocyte telomere length, hypertension, and atherosclerosis: are there potential mechanistic explanations? Hypertension. 2009;53(4):590–1.

    Article  CAS  PubMed  Google Scholar 

  20. Flores I, et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008;22(5):654–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yui J, Chiu CP, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91(9):3255–62.

    CAS  PubMed  Google Scholar 

  22. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3(10):640–9.

    Article  CAS  PubMed  Google Scholar 

  23. von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci. 2000;908:99–110.

    Article  Google Scholar 

  24. Masi S, et al. Association between short leukocyte telomere length, endotoxemia, and severe periodontitis in people with diabetes: a cross-sectional survey. Diabetes Care. 2014;37(4):1140–7.

    Article  CAS  PubMed  Google Scholar 

  25. Masi S, et al. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. Free Radic Biol Med. 2011;50(6):730–5.

    Article  CAS  PubMed  Google Scholar 

  26. Bekaert S, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007;6(5):639–47.

    Article  CAS  PubMed  Google Scholar 

  27. Fouquerel E, et al. Oxidative guanine base damage regulates human telomerase activity. Nat Struct Mol Biol. 2016;23(12):1092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res. 2013;112(8):1171–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208(3):417–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Usui F, et al. Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler Thromb Vasc Biol. 2015;35(1):127–36.

    Article  CAS  PubMed  Google Scholar 

  31. Masi S, et al. Mitochondrial oxidative stress, endothelial function and metabolic control in patients with type II diabetes and periodontitis: a randomised controlled clinical trial. Int J Cardiol. 2018;271:263–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Giorgio M, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221–33.

    Article  CAS  PubMed  Google Scholar 

  33. Guha M, et al. hnRNPA2 mediated acetylation reduces telomere length in response to mitochondrial dysfunction. PLoS One. 2018;13(11):e0206897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar S, et al. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci USA. 2017;114(7):1714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou S, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 2011;109(6):639–48.

    Article  CAS  PubMed  Google Scholar 

  36. Vachharajani VT, et al. Sirtuins link inflammation and metabolism. J Immunol Res. 2016;2016:8167273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1. Pharmacol Res. 2013;67(1):60–7.

    Article  CAS  PubMed  Google Scholar 

  38. De Bonis ML, Ortega S, Blasco MA. SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Rep. 2014;2(5):690–706.

    Article  CAS  Google Scholar 

  39. Xu S, Bai P, Jin ZG. Sirtuins in cardiovascular health and diseases. Trends Endocrinol Metab. 2016;27(10):677–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goronzy JJ, Shao L, Weyand CM. Immune aging and rheumatoid arthritis. Rheum Dis Clin N Am. 2010;36(2):297–310.

    Article  Google Scholar 

  41. Nurmohamed MT, Heslinga M, Kitas GD. Cardiovascular comorbidity in rheumatic diseases. Nat Rev Rheumatol. 2015;11(12):693–704.

    Article  CAS  PubMed  Google Scholar 

  42. Hippisley-Cox J, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–82.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lindhardsen J, et al. The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study. Ann Rheum Dis. 2011;70(6):929–34.

    Article  PubMed  Google Scholar 

  44. van Halm VP, et al. Rheumatoid arthritis versus diabetes as a risk factor for cardiovascular disease: a cross-sectional study, the CARRE Investigation. Ann Rheum Dis. 2009;68(9):1395–400.

    Article  PubMed  Google Scholar 

  45. Agca R, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  46. Steer SE, et al. Reduced telomere length in rheumatoid arthritis is independent of disease activity and duration. Ann Rheum Dis. 2007;66(4):476–80.

    Article  CAS  PubMed  Google Scholar 

  47. Gamal RM, et al. Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol. 2018;37(12):3239–46.

    Article  PubMed  Google Scholar 

  48. Fujii H, et al. Telomerase insufficiency in rheumatoid arthritis. Proc Natl Acad Sci USA. 2009;106(11):4360–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Investig. 2005;115(5):1111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morigi M, et al. Leukocyte–endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Investig. 1998;101(9):1905–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singer G, Granger DN. Inflammatory responses underlying the microvascular dysfunction associated with obesity and insulin resistance. Microcirculation. 2007;14(4–5):375–87.

    Article  CAS  PubMed  Google Scholar 

  52. Friederich M, Hansell P, Palm F. Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev. 2009;5(2):120–44.

    Article  CAS  PubMed  Google Scholar 

  53. Hinokio Y, et al. Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia. 2002;45(6):877–82.

    Article  CAS  PubMed  Google Scholar 

  54. Loft S, et al. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis. 1992;13(12):2241–7.

    Article  CAS  PubMed  Google Scholar 

  55. Sampson MJ, et al. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29(2):283–9.

    Article  CAS  PubMed  Google Scholar 

  56. Masi S, et al. Telomere length, antioxidant status and incidence of ischaemic heart disease in type 2 diabetes. Int J Cardiol. 2016;216:159–64.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Salpea KD, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209(1):42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Humphrey LL, et al. Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis. J Gen Intern Med. 2008;23(12):2079–86.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Janket SJ, et al. Meta-analysis of periodontal disease and risk of coronary heart disease and stroke. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(5):559–69.

    Article  PubMed  Google Scholar 

  60. Lafon A, et al. Periodontal disease and stroke: a meta-analysis of cohort studies. Eur J Neurol. 2014;21(9):1155–61, e66–7.

  61. Mustapha IZ, et al. Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: a systematic review and meta-analysis. J Periodontol. 2007;78(12):2289–302.

    Article  PubMed  Google Scholar 

  62. Tonetti MS, Van Dyke TE, E.F.P.A.A.P.W. Working group 1 of the joint. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol. 2013;40(Suppl 14):S24–9.

    PubMed  Google Scholar 

  63. D’Aiuto F, et al. Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial. Lancet Diabetes Endocrinol. 2018;6(12):954–65.

    Article  PubMed  Google Scholar 

  64. D’Aiuto F, et al. Short-term effects of intensive periodontal therapy on serum inflammatory markers and cholesterol. J Dent Res. 2005;84(3):269–73.

    Article  PubMed  Google Scholar 

  65. D’Aiuto F, Orlandi M, Gunsolley JC. Evidence that periodontal treatment improves biomarkers and CVD outcomes. J Clin Periodontol. 2013;40(Suppl 14):S85–105.

    Article  PubMed  Google Scholar 

  66. Teeuw WJ, et al. Treatment of periodontitis improves the atherosclerotic profile: a systematic review and meta-analysis. J Clin Periodontol. 2014;41(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  67. Tonetti MS, et al. Treatment of periodontitis and endothelial function. N Engl J Med. 2007;356(9):911–20.

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, et al. The effect of periodontal treatment on hemoglobin a1c levels of diabetic patients: a systematic review and meta-analysis. PLoS One. 2014;9(9):e108412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanders AE, et al. Telomere length attrition and chronic periodontitis: an ARIC Study nested case–control study. J Clin Periodontol. 2015;42(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  70. Benetos A, et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001;37(2 Pt 2):381–5.

    Article  CAS  PubMed  Google Scholar 

  71. Benetos A, et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension. 2004;43(2):182–5.

    Article  CAS  PubMed  Google Scholar 

  72. Demissie S, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006;5(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  73. Fitzpatrick AL, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.

    Article  PubMed  Google Scholar 

  74. Samani NJ, et al. Telomere shortening in atherosclerosis. Lancet. 2001;358(9280):472–3.

    Article  CAS  PubMed  Google Scholar 

  75. Aviv A, et al. Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation. J Clin Endocrinol Metab. 2006;91(2):635–40.

    Article  CAS  PubMed  Google Scholar 

  76. Valdes AM, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.

    Article  CAS  PubMed  Google Scholar 

  77. Al-Attas OS, et al. Telomere length in relation to insulin resistance, inflammation and obesity among Arab youth. Acta Paediatr. 2010;99(6):896–9.

    Article  CAS  PubMed  Google Scholar 

  78. O’Donnell CJ, et al. Leukocyte telomere length and carotid artery intimal medial thickness: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2008;28(6):1165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Panayiotou AG, et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010;211(1):176–81.

    Article  CAS  PubMed  Google Scholar 

  80. Willeit P, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30(8):1649–56.

    Article  CAS  PubMed  Google Scholar 

  81. Bischoff C, et al. No association between telomere length and survival among the elderly and oldest old. Epidemiology. 2006;17(2):190–4.

    Article  PubMed  Google Scholar 

  82. Houben JM, et al. Telomere length and mortality in elderly men: the Zutphen Elderly Study. J Gerontol A Biol Sci Med Sci. 2011;66(1):38–44.

    Article  PubMed  Google Scholar 

  83. Martin-Ruiz CM, et al. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell. 2005;4(6):287–90.

    Article  CAS  PubMed  Google Scholar 

  84. Strandberg TE, et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66(7):815–20.

    Article  CAS  PubMed  Google Scholar 

  85. Masi S, et al. Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur Heart J. 2014;35(46):3296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Haycock PC, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. Br Med J. 2014;349:g4227.

    Article  CAS  Google Scholar 

  87. Codd V, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45(4):422–7, 427e1–2.

  88. I.R.G.C.E.R.F. Collaboration, et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379(9822):1205–13.

    Article  CAS  Google Scholar 

  89. Harrison SC, et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur Heart J. 2013;34(48):3707–16.

    Article  CAS  PubMed  Google Scholar 

  90. Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium, et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet. 2012;379(9822):1214–24.

    Article  CAS  Google Scholar 

  91. Paige E, et al. Interleukin-6 receptor signaling and abdominal aortic aneurysm growth rates. Circ Genomic Precis Med. 2019;12(2):e002413.

    Article  CAS  Google Scholar 

  92. Kranzhofer R, et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999;19(7):1623–9.

    Article  CAS  PubMed  Google Scholar 

  93. Wu J, et al. The role of oxidative stress and inflammation in cardiovascular aging. BioMed Res Int. 2014;2014:615312.

    PubMed  PubMed Central  Google Scholar 

  94. Rodier F, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11(8):973–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Botto N, et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001;493(1–2):23–30.

    Article  CAS  PubMed  Google Scholar 

  96. Mahmoudi M, et al. Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res. 2008;103(7):717–25.

    Article  CAS  PubMed  Google Scholar 

  97. Martinet W, et al. Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering. Circ Res. 2001;88(7):733–9.

    Article  CAS  PubMed  Google Scholar 

  98. Martinet W, et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106(8):927–32.

    Article  CAS  PubMed  Google Scholar 

  99. Morgan RG, et al. Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries. Am J Physiol Heart Circ Physiol. 2013;305(2):H251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gardner SE, et al. Senescent vascular smooth muscle cells drive inflammation through an interleukin-1alpha-dependent senescence-associated secretory phenotype. Arterioscler Thromb Vasc Biol. 2015;35(9):1963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ridker PM, et al. antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.

    Article  CAS  PubMed  Google Scholar 

  102. Libby P, Ebert BL. CHIP (clonal hematopoiesis of indeterminate potential). Circulation. 2018;138(7):666–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Steensma DP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jaiswal S, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jaiswal S, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sano S, et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1beta/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71(8):875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dorsheimer L, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4(1):25–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Masi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This article is part of the topical collection on Vascular Aging and Arterial Stiffness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiriacò, M., Georgiopoulos, G., Duranti, E. et al. Inflammation and Vascular Ageing: From Telomeres to Novel Emerging Mechanisms. High Blood Press Cardiovasc Prev 26, 321–329 (2019). https://doi.org/10.1007/s40292-019-00331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-019-00331-7

Keywords

Navigation