Skip to main content

Advertisement

Log in

Sports Injury Forecasting and Complexity: A Synergetic Approach

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The understanding that sports injury is the result of the interaction among many factors and that specific profiles could increase the risk of the occurrence of a given injury was a significant step in establishing programs for injury prevention. However, injury forecasting is far from being attained. To be able to estimate future states of a complex system (forecasting), it is necessary to understand its nature and comply with the methods usually used to analyze such a system. In this sense, sports injury forecasting must implement the concepts and tools used to study the behavior of self-organizing systems, since it is by self-organizing that systems (i.e., athletes) evolve and adapt (or not) to a constantly changing environment. Instead of concentrating on the identification of factors related to the injury occurrence (i.e., risk factors), a complex systems approach looks for the high-order variables (order parameters) that describe the macroscopic dynamic behavior of the athlete. The time evolution of this order parameter informs on the state of the athlete and may warn about upcoming events, such as injury. In this article, we describe the fundamental concepts related to complexity based on physical principles of self-organization and the consequence of accepting sports injury as a complex phenomenon. In the end, we will present the four steps necessary to formulate a synergetics approach based on self-organization and phase transition to sports injuries. Future studies based on this experimental paradigm may help sports professionals to forecast sports injuries occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced from McSharry et al. [89], with permission

Similar content being viewed by others

References

  1. López-Felip MA, Davis TJ, Frank TD, Dixon JA. A cluster phase analysis for collective behavior in team sports. Hum Mov Sci. 2018;59:96–111.

    PubMed  Google Scholar 

  2. Ramos J, Lopes RJ, Araújo D. What’s next in complex networks? Capturing the concept of attacking play in invasive team sports. Sports Med. 2018;48:17–28.

    PubMed  Google Scholar 

  3. Araújo D, Davids K, Hristovski R. The ecological dynamics of decision making in sport. Psych Sport Exerc. 2006;7(6):653–76.

    Google Scholar 

  4. Frank TD, Michelbrink M, Beckmann H, Schöllhorn WI. A quantitative dynamical systems approach to differential learning: self-organization principle and order parameter equations. Biol Cybern. 2007;98(1):19–31.

    PubMed  Google Scholar 

  5. Den Hartigh RJR, Marmelat V, Cox RFA. Multiscale coordination between athletes—complexity matching in ergometer rowing. Hum Mov Sci. 2018;57:434–41.

    Google Scholar 

  6. Fonseca S, Milho J, Travassos B, Araújo D. Spatial dynamics of team sports exposed by Voronoi diagrams. Hum Mov Sci. 2012;31(6):1652–9.

    PubMed  Google Scholar 

  7. Bekker S. Shuffle methodological deck chairs or abandon theoretical ship? The complexity turn in injury prevention. Inj Prev. 2019;25(2):80–2.

    PubMed  Google Scholar 

  8. Bekker S, Clark AM. Bringing complexity to sports injury prevention research: from simplification to explanation. Br J Sports Med. 2016;50(24):1489–90.

    PubMed  Google Scholar 

  9. Bittencourt NFN, Meeuwisse WH, Mendonça LD, et al. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016;50:1309–14.

    CAS  PubMed  Google Scholar 

  10. Bolling C, van Mechelen W, Pasman HR, Verhagen E. Context matters: revisiting the first step of the “sequence of prevention” of sports injuries. Sports Med. 2018;48(10):2227–34.

    PubMed  PubMed Central  Google Scholar 

  11. Hulme A, Finch CF. From monocausality to system thinking: a complementary and alternative conceptual approach for better understanding the development and prevention of sports injury. Inj Epidemiol. 2015;2:31.

    PubMed  PubMed Central  Google Scholar 

  12. Hulme A, Mclean S, Salmon PM, et al. Computational methods to model complex systems in sports injury research: agent-based modeling (ABM) and systems dynamics (SD) modelling. Br J Sports Med. 2018;53(24):1507–10.

    PubMed  Google Scholar 

  13. Hulme A, Thompson J, Nielsen RO, Read G, Salmon P. Towards a complex systems approach in sports injury research: Simulating running-related injury development with Agent-Based Modelling. Br J Sports Med. 2019;53:560–9. https://doi.org/10.1136/bjsports-2017-098871.

    Article  PubMed  Google Scholar 

  14. Pol R, Hristovski R, Medina D, Balague N. From microscopic to macroscopic sports injuries. Applying the complex dynamic systems approach to sports medicine: a narrative review. Br J Sports Med. 2019;53(19):1214–20.

    PubMed  Google Scholar 

  15. Tee JC, McLaren SJ, Jones B. Sports injury prevention is complex: we need to invest in better processes, not singular solutions. Sports Med. 2019. https://doi.org/10.1007/s40279-019-01232-4.

    Article  Google Scholar 

  16. Kakavas G, Malliaropoulos N, Pruna R, Maffulli N. Artificial intelligence. A tool for sports trauma prediction. Injury. 2019. https://doi.org/10.1016/j.injury.2019.08.033.

    Article  PubMed  Google Scholar 

  17. Stern BD, Hegedus EJ, Lai YC. Injury prediction as a non-linear system. Phys Therapy Sport. 2020;41:43–8.

    Google Scholar 

  18. Yates FE. Homeokinetics/Homeodynamics: a physical heuristic for life and complexity. Ecol Psychol. 2008;20(2):148–79.

    Google Scholar 

  19. Prigogine I, Nicolis G. Self-organization in non-equilibrium systems. New York: Wiley; 1977.

    Google Scholar 

  20. Iberall AS. The physics, chemical physics, and biological physics of the origin of life on earth. Ecol Psychol. 2001;13(4):315–27. https://doi.org/10.1207/S15326969ECO1304_03.

    Article  Google Scholar 

  21. Haken H. Synergetics. Phys A. 1984;127(1–3):26–36.

    CAS  Google Scholar 

  22. Scheffer M, Carpenter SR, Lenton TM, et al. Anticipating critical transitions. Science. 2012;338(6105):344–8.

    CAS  PubMed  Google Scholar 

  23. Scheffer M, Bascompte J, Brock WA, et al. Early-warning signals for critical transitions. Nature. 2009;461(7260):53–9.

    CAS  PubMed  Google Scholar 

  24. Holland JH. Hidden order: how adaptation builds complexity from chaos. Redwood City: Addison-Wesley Longman Publishing Company; 1995. ISBN 0-201-40793-0.

    Google Scholar 

  25. Salmon PM, McLean S. Complexity in the beautiful game: implications for football research and practice. Sci Med Football. 2020;4(2):162–7. https://doi.org/10.1080/24733938.2019.1699247.

    Article  Google Scholar 

  26. Rosen R. Life itself. New York: Columbia University Press; 1991.

    Google Scholar 

  27. Rosen R. Essays on life itself. New York: Columbia University Press; 2000. p. 361.

    Google Scholar 

  28. Von Bertalanffy L. General systems theory: foundations, development, applications (Revised Edition ed.). New York: George Braziller Publishing; 1969. p. 296.

    Google Scholar 

  29. Johnson NF. Two’s Company, Three is Complexity. In: Johnson NF (ed) Simply complexity: a clear guide to complexity theory. Reprint Edition; 2009. pp. 1–16.

  30. Kugler PN, Turvey MT. Self-organization, flow fields, and information. Hum Move Sci. 1988;7(2):97–129.

    Google Scholar 

  31. Weaver W. Science and complexity. American scientist. Boston: Springer; 1948. p. 536–44.

    Google Scholar 

  32. Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading in the right direction? Br J Sports Med. 2012;46(2):81–5.

    PubMed  Google Scholar 

  33. Balagué N, Pol R, Torrents C, et al. On the relatedness and nestedness of constraints. Sports Med Open. 2019;5:6. https://doi.org/10.1186/s40798-019-0178-z.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Verschueren J, Tassignon B, De Pauw K, et al. Does acute fatigue negatively affect Intrinsic risk factors of the lower extremity injury risk profile? A systematic and critical review. Sports Med. 2019. https://doi.org/10.1007/s40279-019-01235-1.

    Article  PubMed  Google Scholar 

  35. Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS. The analysis of observed chaotic data in physical systems. Rev Mod Phys. 1993;65(4):1331–92.

    Google Scholar 

  36. Heylighen F. Building a science of complexity. In: Fatmi HA, editor. Proceedings of the 1988 annual conference of the Cybernetics Society (London). London: Cybernetics Society, King’s College; 1988. p. 1–22. http://pcp.vub.ac.be/Papers/BuildingComplexity.pdf.

  37. Heylighen F. Complexity and self-organization. In: Bates MJ, Maack MN, editors. Encyclopedia of library and information sciences. Routledge: Taylor & Francis; 2008.

    Google Scholar 

  38. Gollub JP, Langer JS. Pattern formation in nonequilibrium physics. Rev Mod Phys. 1991;71(2):S396–403.

    Google Scholar 

  39. Ottino JM, Khakhar DV. Scaling of granular flow processes: from surface flows to design rules. AIChE J. 2002;48:2157–66.

    CAS  Google Scholar 

  40. Haken H. Visions of synergetics. J Franklin Inst Eng Appl Math. 1997;334B(5–6):759–92.

    Google Scholar 

  41. Piggott B, Müller S, Chivers P, Burgin M, Hoyne G. Coach rating combined with small-sided games provides further insight into mental toughness in sport. Front Psychol. 2019;10:1552.

    PubMed  PubMed Central  Google Scholar 

  42. Haken H. Synergetics an interdisciplinary approach to phenomena of self-organization. Geoforum. 1985;16(2):205–11.

    Google Scholar 

  43. Angeli D, Ferrell JE Jr, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA. 2004;101(17):1822–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Preatoni E, Hamill J, Harrison AJ, et al. Movement variability and skills monitoring in sports. Sports Biomech. 2013;12(2):69–92.

    PubMed  Google Scholar 

  45. Beek PJ, Santvoord AAM. Learning the cascade juggle: a dynamical systems analysis. J Mot Behav. 1992;24(1):85–94. https://doi.org/10.1080/00222895.1992.9941604.

    Article  CAS  PubMed  Google Scholar 

  46. Kelso J, Schalz JP, Schöner G. Nonequilibrium phase—transitions in coordinated biological motion—critical fluctuations. Phys Lett A. 1986;118(6):279–84.

    Google Scholar 

  47. Kelso JAS, Schöner G. Self-organization of coordinative movement patterns. Hum Mov Sci. 1981;7(1):27–46.

    Google Scholar 

  48. Kelso J, Scholz JP, Schöner G. Dynamics governs switching among patterns of coordination in biological movement. Phys Lett A. 1988;134(1):8–12.

    Google Scholar 

  49. Friedrich R, Haken H. A short course on synergetics. Nonlinear phenomena in complex system. Berlin: Elsevier Science Publishers B.V.; 1989. p. 48.

    Google Scholar 

  50. Gabbett TJ, Nielsen RO, Bertelsen ML, Bittencourt NFN, Fonseca S, Malone S, et al. In pursuit of the “Unbreakable” Athlete: what is the role of moderating factors and circular causation? Br J Sports Med. 2018;53(7):394–5.

    PubMed  Google Scholar 

  51. Haken H, Kelso JAS, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985;39:139–56.

    Google Scholar 

  52. Chow JY, Davids K, Button C, Rein R, Hristovski R, Koh M. Dynamics of multi-articular coordination in neurobiological systems. Nonlinear Dyn Psychol Life Sci. 2009;13(1):275.

    Google Scholar 

  53. Hristovski R, Davids K, Araújo D. Affordance—controlled bifurcations of action patterns in martial arts. Nonlinear Dyn Psychol Life Sci. 2006;4:409–44.

    Google Scholar 

  54. Bak P, Tang C, Wiesenfeld K. Self-organized criticality—an explanation of 1/F noise. Phys Rev Lett Am Phys Soc. 1987;59(4):381–4.

    CAS  Google Scholar 

  55. Camomilla V, Bergamini E, Fantozzi S, et al. Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: a systematic review. Sensors. 2018;18(3):873.

    PubMed Central  Google Scholar 

  56. Li RT, Kling SR, Salata MJ, et al. Wearable performance devices in sports medicine. Sports Health. 2016;8(1):74–8.

    PubMed  PubMed Central  Google Scholar 

  57. Mendonça LD, Ocarino JM, Bittencourt NFN, Macedo LG, Fonseca ST. Association of hip and foot factors with patellar tendinopathy (Jumper’s Knee) in Athletes. J Orthop Sports Phys Ther. 2018;48(9):676–84.

    PubMed  Google Scholar 

  58. Mendonça LD, Verhagen E, Bittencourt NF, Gonçalves GG, Ocarino JM, Fonseca ST. Factors associated with the presence of patellar tendon abnormalities in male athletes. J Sci Med Sport. 2016;19(5):389–94.

    PubMed  Google Scholar 

  59. Dong J. The role of heart rate variability in sports physiology (Review). Exp Ther Med. 2016;11(5):1531–6.

    PubMed  PubMed Central  Google Scholar 

  60. Amano M, Kanda T, Ue H, Moritani T. Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc. 2001;33:1287–91.

    CAS  PubMed  Google Scholar 

  61. Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112:3729–41.

    PubMed  Google Scholar 

  62. Haag K, Hiller R, Peyk P, Abnorm J, et al. A longitudinal examination of heart-rate and heart rate variability as risk markers for child posttraumatic stress symptoms in an acute injury sample. J Abnorm Child Psychol. 2019;47(11):1811–20.

    PubMed  PubMed Central  Google Scholar 

  63. Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101:743–51.

    PubMed  Google Scholar 

  64. Luo H, Wei J, Yasin Y, et al. Stress determined through heart rate variability predicts immune function. NeuroImmunoModulation. 2019;13:1–7.

    CAS  Google Scholar 

  65. Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33:889–919.

    PubMed  Google Scholar 

  66. Williams S, Booton T, Watson M, Rowland D, Altini M. Heart rate variability is a moderating factor in the workload-injury relationship of competitive CrossFit (TM) athletes. J Sport Sci Med. 2017;16(4):443–9.

    Google Scholar 

  67. Noble BJ, Robertson RJ. Perceived exertion. Human kinetics. Albany: Champaing; 1996.

    Google Scholar 

  68. de Morree HM, Klein C, Marcora SM. Neurophysiology of perceived effort. Psychophysiology. 2012;49:1242–53.

    PubMed  Google Scholar 

  69. Pageaux B, Marcora SM, Rozand V, Lepers R. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci. 2015;9(755):67.

    PubMed  PubMed Central  Google Scholar 

  70. Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Scie Sports Exer. 2004;36(6):1042–7.

    Google Scholar 

  71. Aragonés D, Balagué N, Hristovski R, Pol R, Tenenbaum G. Fluctuating dynamics of perceived exertion in constant power exercise. Psychol Sport Exerc. 2013;14:796–803.

    Google Scholar 

  72. Balagué N, Hristovski R, García S, Aguirre C, Vázquez P, Razon S, Tenenbaum G. Dynamics of perceived exertion in constant power cycling: time and workload-dependent thresholds. Res Q Sport Exerc. 2015;86:371–8.

    Google Scholar 

  73. Montull Ll, Vázquez P, Hristovski R, Balagué N. Hysteresis of psychobiological variables during exercise. Psychol Sport Exerc. 2020;48:101647.

    Google Scholar 

  74. Watson A, Brickson S, Brooks A, Dunn W. Subjective well-being and training load predict in-season injury and illness risk in female youth soccer players. Br J Sports Med. 2017;51(3):194–9.

    PubMed  Google Scholar 

  75. Fonseca S, Ocarino JM, Silva PLP, Aquino CF. Integration of stresses and their relationship to the kinetic chain. In: Magee DJ (ed) Scientific foundations and principles in musculoskeletal rehabilitation. First; 2007. pp. 476–86.

  76. Diedrich FJ, Warren WH Jr. Why change gaits? Dynamics of the walk-run transition. J Exp Psychol Hum Percept Perform. 1995;21(1):183–202.

    CAS  PubMed  Google Scholar 

  77. Van Emmerik RE, Wagenaar RC, Winogrodzka A, Wolters EC. Identification of axial rigidity during locomotion in Parkinson disease. Arch Phys Med Rehabil. 1999;80(2):186–91.

    PubMed  Google Scholar 

  78. Hamill J, Van Emmerik REA, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297–308.

    CAS  Google Scholar 

  79. Seay JF, Van Emmerik REA, Hamill J. Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin Biomech. 2011;26(6):572–8.

    Google Scholar 

  80. Tang L, Lv H, Yang F, Yu L. Complexity testing techniques for time series data: a comprehensive literature review. Chaos Solitons Fract. 2015;81(Part A):117–35.

    Google Scholar 

  81. Ducharme SW, Liddy JJ, Haddad JM, et al. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking. Hum mov science. 2018;58:248–59.

    Google Scholar 

  82. Van Emmerik REA, Ducharme SW, Amado AC, Hamill J. Comparing dynamical systems concepts and techniques for biomechanical analysis. J Sport Health Sci. 2016;5(1):3–13.

    PubMed  PubMed Central  Google Scholar 

  83. Vieira MF, Rodrigues FB, de Sáe-Souza GS, et al. Linear and nonlinear gait features in older adults walking on inclined surfaces at different speeds. Ann Biomed Eng. 2017;45(6):1560–71.

    PubMed  Google Scholar 

  84. Vieira MF, Rodrigues FB, de Sáe-Souza GS, et al. Gait stability, variability and complexity on inclined surfaces. J Biomech. 2017;54:73–9.

    PubMed  Google Scholar 

  85. Vázquez P, Hristovski R, Balagué N. The path to exhaustion: time-variability properties of coordinative variables during continuous exercise. Front Physiol. 2016;7:37.

    PubMed  PubMed Central  Google Scholar 

  86. Wen H, Ciamarra MP, Cheong SA. How one might miss early warning signals of critical transitions in time series data: a systematic study of two major currency pairs. PLoS One. 2018;13(3):e0191439.

    PubMed  PubMed Central  Google Scholar 

  87. Ballester J, Lowe R, Diggle PJ, Rodó X. Seasonal forecasting and health impact models: challenges and opportunities. Ann N Y Acad Sci. 2016;1382(1):8–20.

    PubMed  Google Scholar 

  88. Schroeder M. Fractals, chaos, power laws: minutes from an infinite paradise. New York: Freeman; 1991. p. 448.

    Google Scholar 

  89. McSharry P, Smith L, Tarassenko L. Prediction of epileptic seizures: are nonlinear methods relevant? Nat Med. 2003;2003:241–2.

    Google Scholar 

  90. Dakos V, Carpenter SR, van Nes EH, Scheffer M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil Trans R Soc B. 2015;370(1659):263–71.

    Google Scholar 

  91. Battiston S, Farmer JD, Flache A, et al. Complexity theory and financial regulation. Science. 2016;351(6275):818.

    CAS  PubMed  Google Scholar 

  92. Battiston S, Glattfelder JB, Garlaschelli D, et al. The structure of financial networks. In: Estrada E, Fox M, Higham DJ, Oppo G-L, editors. Network science: complexity in nature and technology. London: Springer; 2010. p. 131–63.

    Google Scholar 

  93. Buldú JM, Busquets J, Echegoyen I, et al. Defining a historic football team: Using Network Science to analyze Guardiola’s F.C. Barcelona. Sci Rep. 2019;9:13602. https://doi.org/10.1038/s41598-019-49969-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Duch J, Waitzman JS, Amaral LA. Quantifying the performance of individual players in a team activity. PLoS ONE. 2010;5(6):e10937. https://doi.org/10.1371/journal.pone.0010937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bardoscia M, Battiston S, Caccioli F, Caldarelli G. Pathways towards instability in financial networks. Nature Commun. 2017;8(1):14416–7.

    CAS  Google Scholar 

  96. Gabaix X, Gopikrishnan P, Plerou V, Stanley HE. A theory of power-law distributions in financial market fluctuations. Nature. 2003;423(6937):267–70.

    CAS  PubMed  Google Scholar 

  97. Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: the visibility graph. Proc Nati Acad Sci. 2008;105(13):4972–5.

    CAS  Google Scholar 

  98. Zhang J, Small M. Complex network from pseudoperiodic time series: topology versus dynamics. Phys Rev Lett. 2006;96(23):238701.

    CAS  PubMed  Google Scholar 

  99. Wu Z, Huang NE, Long SR, Peng CK. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA. 2007;104(38):14889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio T. Fonseca.

Ethics declarations

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Finance Code 001), the State of Minas Gerais Funding Agency—FAPEMIG, and the Brazilian Funding Agency—CNPq.

Conflicts of interest

Sergio Fonseca, Thales Souza, Evert Verhagen, Richard van Emmerik, Natalia Bittencourt, Luciana Mendonça, André Andrade, Renan Resende and Juliana Ocarino declare that they have no conflicts of interest relevant to the content of this review.

Authorship contributions

SF proposed and wrote the first draft of the manuscript. TS and JO participated in the conception of the manuscript and provided input to the first draft. EV, RVE, NB, LM, AA and RR revised the original manuscript and provided input to subsequent drafts. All authors read and approved the final manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, S.T., Souza, T.R., Verhagen, E. et al. Sports Injury Forecasting and Complexity: A Synergetic Approach. Sports Med 50, 1757–1770 (2020). https://doi.org/10.1007/s40279-020-01326-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01326-4

Navigation