Skip to main content
Log in

Drug Treatment of Low Bone Mass and Other Bone Conditions in Pediatric Patients

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Osteoporosis may affect young individuals, albeit infrequently. In childhood, bone mass increases, reaching its peak between the second and third decades; then, after a period of stability, it gradually declines. Several conditions, including genetic disorders, chronic diseases, and some medications, can have an impact on bone homeostasis. Diagnosis in young patients is based on the criteria defined by the International Society for Clinical Densitometry (ISCD), published in 2013. High risk factors should be identified and monitored. Often simple interventions aimed to eliminate the underlying cause, to minimize the negative bone effects linked to drugs, or to increase calcium and vitamin D intake can protect bone mass. However, in selected cases, pharmacological treatment should be considered. Bisphosphonates remain the main therapeutic agent for children with significant skeletal fragility and are also useful in a large number of other bone conditions. Denosumab, an anti-RANKL antibody, could become a potential alternative treatment. Clinical trials to evaluate the long-term effects and safety of denosumab in children are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandra A, Rajawat J. Skeletal aging and osteoporosis: mechanisms and therapeutics. Int J Mol Sci. 2021;22:3553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ward LM, Weber DR, Munns CF, Högler W, Zemel BS. A contemporary view of the definition and diagnosis of osteoporosis in children and adolescents. J Clin Endocrinol Metab. 2020;105:dgz294.

    Article  PubMed  Google Scholar 

  3. Ward LM. Glucocorticoid-induced osteoporosis: why kids are different. Front Endocrinol. 2020;11:576.

    Article  Google Scholar 

  4. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom Off J Int Soc Clin Densitom. 2014;17:275–80.

    Article  Google Scholar 

  5. Sakka SD, Cheung MS. Management of primary and secondary osteoporosis in children. Ther Adv Musculoskelet Dis. 2020;12:1759720X20969262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karlsland Åkeson P, Åkesson KE, Lind T, Hernell O, Silfverdal S-A, Öhlund I. Vitamin D intervention and bone: a randomized clinical trial in fair- and dark-skinned children at northern latitudes. J Pediatr Gastroenterol Nutr. 2018;67:388–94.

    Article  PubMed  Google Scholar 

  7. Bowden SA, Robinson RF, Carr R, Mahan JD. Prevalence of vitamin D deficiency and insufficiency in children with osteopenia or osteoporosis referred to a pediatric metabolic bone clinic. Pediatrics. 2008;121:e1585-1590.

    Article  PubMed  Google Scholar 

  8. Vierucci F, Saggese G, Cimaz R. Osteoporosis in childhood. Curr Opin Rheumatol. 2017;29:535–46.

    Article  PubMed  Google Scholar 

  9. Richards JB, Zheng H-F, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 2012;13:576–88.

    Article  CAS  PubMed  Google Scholar 

  10. Marini JC, Forlino A, Bächinger HP, Bishop NJ, Byers PH, Paepe AD, et al. Osteogenesis imperfecta. Nat Rev Dis Primer. 2017;3:17052.

    Article  Google Scholar 

  11. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet Lond Engl. 2016;387:1657–71.

    Article  CAS  Google Scholar 

  12. OMIM - Online Mendelian Inheritance in Man [Internet]. https://omim.org/ [cited 2021 Jun 28].

  13. Kämpe AJ, Mäkitie RE, Mäkitie O. New genetic forms of childhood-onset primary osteoporosis. Horm Res Paediatr. 2015;84:361–9.

    Article  PubMed  Google Scholar 

  14. Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179:2393–419.

    Article  PubMed  Google Scholar 

  15. Lorenc RS. Idiopathic juvenile osteoporosis. Calcif Tissue Int. 2002;70:395–7.

    Article  CAS  PubMed  Google Scholar 

  16. Krassas GE. Idiopathic juvenile osteoporosis. Ann N Y Acad Sci. 2000;900:409–12.

    Article  CAS  PubMed  Google Scholar 

  17. Amarasekara DS, Yu J, Rho J. Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res. 2015;2015: 832127.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huber AM, Ward LM. The impact of underlying disease on fracture risk and bone mineral density in children with rheumatic disorders: a review of current literature. Semin Arthritis Rheum. 2016;46:49–63.

    Article  PubMed  Google Scholar 

  19. Stagi S, Cavalli L, Signorini C, Bertini F, Cerinic MM, Brandi ML, et al. Bone mass and quality in patients with juvenile idiopathic arthritis: longitudinal evaluation of bone-mass determinants by using dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and quantitative ultrasonography. Arthritis Res Ther. 2014;16:R83.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lim SHL, Benseler SM, Tyrrell PN, Charron M, Harvey E, Hebert D, et al. Low bone mineral density is present in newly diagnosed paediatric systemic lupus erythematosus patients. Ann Rheum Dis. 2011;70:1991–4.

    Article  PubMed  Google Scholar 

  21. Santiago RA, Silva CA, Caparbo VF, Sallum AME, Pereira RMR. Bone mineral apparent density in juvenile dermatomyositis: the role of lean body mass and glucocorticoid use. Scand J Rheumatol. 2008;37:40–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rouster-Stevens KA, Langman CB, Price HE, Seshadri R, Shore RM, Abbott K, et al. RANKL:osteoprotegerin ratio and bone mineral density in children with untreated juvenile dermatomyositis. Arthritis Rheumatol. 2007;56:977–83.

    Article  CAS  Google Scholar 

  23. Hansen KE, Kleker B, Safdar N, Bartels CM. A systematic review and meta-analysis of glucocorticoid-induced osteoporosis in children. Semin Arthritis Rheum. 2014;44:47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9:575–83.

    Article  CAS  PubMed  Google Scholar 

  25. Adami G, Saag KG. Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2019;30:1145–56.

    Article  CAS  Google Scholar 

  26. LeBlanc CMA, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30:1667–75.

    Article  CAS  Google Scholar 

  27. Björck S, Brundin C, Karlsson M, Agardh D. Reduced bone mineral density in children with screening-detected celiac disease. J Pediatr Gastroenterol Nutr. 2017;65:526–32.

    Article  PubMed  Google Scholar 

  28. Bernstein CN, Leslie WD. Therapy insight: osteoporosis in inflammatory bowel disease—advances and retreats. Nat Clin Pract Gastroenterol Hepatol. 2005;2:232–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bourges O, Dorgeret S, Alberti C, Hugot JP, Sebag G, Cézard JP. Low bone mineral density in children with Crohn’s disease. Arch Pediatr Organe Off Soc Francaise Pediatr. 2004;11:800–6.

    CAS  Google Scholar 

  30. Söderpalm A-C, Magnusson P, Ahlander A-C, Karlsson J, Kroksmark A-K, Tulinius M, et al. Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy. Neuromuscul Disord NMD. 2007;17:919–28.

    Article  PubMed  Google Scholar 

  31. Ward LM, Hadjiyannakis S, McMillan HJ, Noritz G, Weber DR. Bone health and osteoporosis management of the patient with duchenne muscular dystrophy. Pediatrics. 2018;142:S34–42.

    Article  PubMed  Google Scholar 

  32. Ma J, Siminoski K, Alos N, Halton J, Ho J, Lentle B, et al. The choice of normative pediatric reference database changes spine bone mineral density Z-scores but not the relationship between bone mineral density and prevalent vertebral fractures. J Clin Endocrinol Metab. 2015;100:1018–27.

    Article  CAS  PubMed  Google Scholar 

  33. Fiscaletti M, Coorey CP, Biggin A, Briody J, Little DG, Schindeler A, et al. Diagnosis of recurrent fracture in a pediatric cohort. Calcif Tissue Int. 2018;103:529–39.

    Article  CAS  PubMed  Google Scholar 

  34. Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25:520–6.

    Article  Google Scholar 

  35. Crabtree NJ, Shaw NJ, Bishop NJ, Adams JE, Mughal MZ, Arundel P, et al. Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults—the ALPHABET study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2017;32:172–80.

    Article  Google Scholar 

  36. Adams JE, Engelke K, Zemel BS, Ward KA, International Society of Clinical Densitometry. Quantitative computer tomography in children and adolescents: the 2013 ISCD Pediatric Official Positions. J Clin Densitom Off J Int Soc Clin Densitom. 2014;17:258–74.

    Article  Google Scholar 

  37. Weber DR, Boyce A, Gordon C, Högler W, Kecskemethy HH, Misra M, et al. The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: 2019 ISCD official position. J Clin Densitom Off J Int Soc Clin Densitom. 2019;22:567–89.

    Article  Google Scholar 

  38. Beltrand J, Alison M, Nicolescu R, Verkauskiene R, Deghmoun S, Sibony O, et al. Bone mineral content at birth is determined both by birth weight and fetal growth pattern. Pediatr Res. 2008;64:86–90.

    Article  PubMed  Google Scholar 

  39. Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2006;17:337–47.

    Article  Google Scholar 

  40. Brustad N, Garland J, Thorsen J, Sevelsted A, Krakauer M, Vinding RK, et al. Effect of high-dose vs standard-dose vitamin D supplementation in pregnancy on bone mineralization in offspring until age 6 years. JAMA Pediatr. 2020;174:1–9.

    Article  PubMed Central  Google Scholar 

  41. Pan K, Tu R, Yao X, Zhu Z. Associations between serum calcium, 25(OH)D level and bone mineral density in adolescents. Adv Rheumatol Lond Engl. 2021;61:16.

    Article  Google Scholar 

  42. Winzenberg TM, Powell S, Shaw KA, Jones G. Vitamin D supplementation for improving bone mineral density in children. Cochrane Database Syst Rev. 2010;10: CD006944.

    Google Scholar 

  43. Thiagarajan NR, Kumar CGD, Sahoo J, Krishnamurthy S. Effect of vitamin D and calcium supplementation on bone mineral content in children with thalassemia. Indian Pediatr. 2019;56:307–10.

    Article  CAS  PubMed  Google Scholar 

  44. Solmaz I, Ozdemir MA, Unal E, Abdurrezzak U, Muhtaroglu S, Karakukcu M. Effect of vitamin K2 and vitamin D3 on bone mineral density in children with acute lymphoblastic leukemia: a prospective cohort study. J Pediatr Endocrinol Metab JPEM. 2021;34:441–7.

    Article  CAS  PubMed  Google Scholar 

  45. Winzenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ. 2011;342:c7254.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Behringer M, Gruetzner S, McCourt M, Mester J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29:467–78.

    Article  Google Scholar 

  47. McVey MK, Geraghty AA, O’Brien EC, McKenna MJ, Kilbane MT, Crowley RK, et al. The impact of diet, body composition, and physical activity on child bone mineral density at five years of age-findings from the ROLO Kids Study. Eur J Pediatr. 2020;179:121–31.

    Article  CAS  PubMed  Google Scholar 

  48. Kopiczko A, Łopuszańska-Dawid M, Gryko K. Bone mineral density in young adults: the influence of vitamin D status, biochemical indicators, physical activity and body composition. Arch Osteoporos. 2020;15:45.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Krahenbühl T, Guimarães R de F, Barros Filho A de A, Gonçalves EM. Bone geometry and physical activity in children and adolescents: systematic review. Rev Paul Pediatr Orgao Soc Pediatr Sao Paulo. 2018;36:230–7.

  50. Gannotti ME, Nahorniak M, Gorton GE, Sciascia K, Sueltenfuss M, Synder M, et al. Can exercise influence low bone mineral density in children with juvenile rheumatoid arthritis? Pediatr Phys Ther Off Publ Sect Pediatr Am Phys Ther Assoc. 2007;19:128–39.

    Google Scholar 

  51. Omori CH, Silva CAA, Sallum AME, Rodrigues Pereira RM, Lúciade Sá Pinto A, Roschel H, et al. Exercise training in juvenile dermatomyositis. Arthritis Care Res. 2012;64:1186–94.

    CAS  Google Scholar 

  52. Simonini G, Giani T, Stagi S, de Martino M, Falcini F. Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatol Oxf Engl. 2005;44:777–80.

    Article  CAS  Google Scholar 

  53. Billiau AD, Loop M, Le P-Q, Berthet F, Philippet P, Kasran A, et al. Etanercept improves linear growth and bone mass acquisition in MTX-resistant polyarticular-course juvenile idiopathic arthritis. Rheumatol Oxf Engl. 2010;49:1550–8.

    Article  CAS  Google Scholar 

  54. Lange U, Teichmann J, Müller-Ladner U, Strunk J. Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatol Oxf Engl. 2005;44:1546–8.

    Article  CAS  Google Scholar 

  55. Veerappan SG, O’Morain CA, Daly JS, Ryan BM. Review article: the effects of antitumour necrosis factor-α on bone metabolism in inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33:1261–72.

    Article  CAS  PubMed  Google Scholar 

  56. Zerbini CAF, Clark P, Mendez-Sanchez L, Pereira RMR, Messina OD, Uña CR, et al. Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2017;28:429–46.

    Article  CAS  Google Scholar 

  57. Georgiou KR, Scherer MA, Fan C-M, Cool JC, King TJ, Foster BK, et al. Methotrexate chemotherapy reduces osteogenesis but increases adipogenic potential in the bone marrow. J Cell Physiol. 2012;227:909–18.

    Article  CAS  PubMed  Google Scholar 

  58. Fan C, Georgiou KR, King TJ, Xian CJ. Methotrexate toxicity in growing long bones of young rats: a model for studying cancer chemotherapy-induced bone growth defects in children. J Biomed Biotechnol [Internet]; 2011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085506/ [cited 2021 May 15].

  59. May KP, Mercill D, McDermott MT, West SG. The effect of methotrexate on mouse bone cells in culture. Arthritis Rheumatol. 1996;39:489–94.

    Article  CAS  Google Scholar 

  60. di Munno O, Mazzantini M, Sinigaglia L, Bianchi G, Minisola G, Muratore M, et al. Effect of low dose methotrexate on bone density in women with rheumatoid arthritis: results from a multicenter cross-sectional study. J Rheumatol. 2004;31:1305–9.

    PubMed  Google Scholar 

  61. Cranney AB, McKendry RJ, Wells GA, Ooi DS, Kanigsberg ND, Kraag GR, et al. The effect of low dose methotrexate on bone density. J Rheumatol. 2001;28:2395–9.

    CAS  PubMed  Google Scholar 

  62. Bianchi ML, Cimaz R, Galbiati E, Corona F, Cherubini R, Bardare M. Bone mass change during methotrexate treatment in patients with juvenile rheumatoid arthritis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 1999;10:20–5.

    Article  CAS  Google Scholar 

  63. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc Mayo Clin. 2008;83:1032–45.

    Article  CAS  PubMed  Google Scholar 

  64. Gertz BJ, Holland SD, Kline WF, Matuszewski BK, Porras AG. Clinical pharmacology of alendronate sodium. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 1993;3(Suppl 3):S13-16.

    Article  Google Scholar 

  65. Bishop N, Adami S, Ahmed SF, Antón J, Arundel P, Burren CP, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2013;382:1424–32.

    Article  CAS  Google Scholar 

  66. Seikaly MG, Kopanati S, Salhab N, Waber P, Patterson D, Browne R, et al. Impact of alendronate on quality of life in children with osteogenesis imperfecta. J Pediatr Orthop. 2005;25:786–91.

    Article  PubMed  Google Scholar 

  67. DiMeglio LA, Peacock M. Two-year clinical trial of oral alendronate versus intravenous pamidronate in children with osteogenesis imperfecta. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21:132–40.

    Article  Google Scholar 

  68. Bianchi ML, Cimaz R, Bardare M, Zulian F, Lepore L, Boncompagni A, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheumatol. 2000;43:1960–6.

    Article  CAS  Google Scholar 

  69. Lepore L, Pennesi M, Barbi E, Pozzi R. Treatment and prevention of osteoporosis in juvenile chronic arthritis with disodium clodronate. Clin Exp Rheumatol. 1991;9(Suppl 6):33–5.

    PubMed  Google Scholar 

  70. El-Husseini AA, El-Agroudy AE, El-Sayed MF, Sobh MA, Ghoneim MA. Treatment of osteopenia and osteoporosis in renal transplant children and adolescents. Pediatr Transplant. 2004;8:357–61.

    Article  PubMed  Google Scholar 

  71. Rudge S, Hailwood S, Horne A, Lucas J, Wu F, Cundy T. Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatol Oxf Engl. 2005;44:813–8.

    Article  CAS  Google Scholar 

  72. Iwasaki T, Takei K, Nakamura S, Hosoda N, Yokota Y, Ishii M. Secondary osteoporosis in long-term bedridden patients with cerebral palsy. Pediatr Int Off J Jpn Pediatr Soc. 2008;50:269–75.

    Article  Google Scholar 

  73. Zheng W-B, Dai Y, Hu J, Zhao D-C, Wang O, Jiang Y, et al. Effects of bisphosphonates on osteoporosis induced by Duchenne muscular dystrophy: a prospective study. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2020;26:1477–85.

    Google Scholar 

  74. Sakkers R, Kok D, Engelbert R, van Dongen A, Jansen M, Pruijs H, et al. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet Lond Engl. 2004;363:1427–31.

    Article  CAS  Google Scholar 

  75. Rauch F, Munns CF, Land C, Cheung M, Glorieux FH. Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2009;24:1282–9.

    Article  CAS  Google Scholar 

  76. Ward LM, Rauch F, Whyte MP, D’Astous J, Gates PE, Grogan D, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96:355–64.

    Article  CAS  PubMed  Google Scholar 

  77. Land C, Rauch F, Munns CF, Sahebjam S, Glorieux FH. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone. 2006;39:901–6.

    Article  CAS  PubMed  Google Scholar 

  78. Astrom E, Soderhall S. Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child. 2002;86:356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rooney M, Bishop N, Davidson J, Beresford MW, Pilkington C, Donagh JM, et al. The prevention and treatment of glucocorticoid-induced osteopaenia in juvenile rheumatic disease: a randomised double-blind controlled trial. EClinicalMedicine. 2019;12:79–87.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Simm PJ, Biggin A, Zacharin MR, Rodda CP, Tham E, Siafarikas A, et al. Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health. 2018;54:223–33.

    Article  PubMed  Google Scholar 

  81. Munns CFJ, Rauch F, Travers R, Glorieux FH. Effects of intravenous pamidronate treatment in infants with osteogenesis imperfecta: clinical and histomorphometric outcome. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:1235–43.

    Article  CAS  Google Scholar 

  82. DiMeglio LA, Ford L, McClintock C, Peacock M. Intravenous pamidronate treatment of children under 36 months of age with osteogenesis imperfecta. Bone. 2004;35:1038–45.

    Article  CAS  PubMed  Google Scholar 

  83. Kusumi K, Ayoob R, Bowden SA, Ingraham S, Mahan JD. Beneficial effects of intravenous pamidronate treatment in children with osteogenesis imperfecta under 24 months of age. J Bone Miner Metab. 2015;33:560–8.

    Article  CAS  PubMed  Google Scholar 

  84. Lin C-H, Chien Y-H, Peng S-F, Tsai W-Y, Tung Y-C, Lee C-T, et al. Cyclic pamidronate infusion for neonatal-onset osteogenesis imperfecta. Pediatr Neonatol. 2014;55:306–11.

    Article  PubMed  Google Scholar 

  85. Gandrud LM, Cheung JC, Daniels MW, Bachrach LK. Low-dose intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab JPEM. 2003;16:887–92.

    Article  CAS  PubMed  Google Scholar 

  86. Steelman J, Zeitler P. Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions. J Pediatr. 2003;142:417–23.

    Article  CAS  PubMed  Google Scholar 

  87. Martinez-Soto T, Pacaud D, Stephure D, Trussell R, Huang C. Treatment of symptomatic osteoporosis in children: a comparison of two pamidronate dosage regimens. J Pediatr Endocrinol Metab JPEM. 2011;24:271–4.

    Article  CAS  PubMed  Google Scholar 

  88. Maines E, Monti E, Doro F, Morandi G, Cavarzere P, Antoniazzi F. Children and adolescents treated with neridronate for osteogenesis imperfecta show no evidence of any osteonecrosis of the jaw. J Bone Miner Metab. 2012;30:434–8.

    Article  CAS  PubMed  Google Scholar 

  89. Idolazzi L, Fassio A, Viapiana O, Rossini M, Adami G, Bertoldo F, et al. Treatment with neridronate in children and adolescents with osteogenesis imperfecta: data from open-label, not controlled, three-year Italian study. Bone. 2017;103:144–9.

    Article  CAS  PubMed  Google Scholar 

  90. Gatti D, Antoniazzi F, Prizzi R, Braga V, Rossini M, Tatò L, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:758–63.

    Article  CAS  Google Scholar 

  91. Barros ER, Saraiva GL, de Oliveira TP, Lazaretti-Castro M. Safety and efficacy of a 1-year treatment with zoledronic acid compared with pamidronate in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab JPEM. 2012;25:485–91.

    Article  CAS  PubMed  Google Scholar 

  92. Ooi HL, Briody J, Biggin A, Cowell CT, Munns CF. Intravenous zoledronic acid given every 6 months in childhood osteoporosis. Horm Res Paediatr. 2013;80:179–84.

    Article  CAS  PubMed  Google Scholar 

  93. Saraff V, Sahota J, Crabtree N, Sakka S, Shaw NJ, Högler W. Efficacy and treatment costs of zoledronate versus pamidronate in paediatric osteoporosis. Arch Dis Child. 2018;103:92–4.

    Article  PubMed  Google Scholar 

  94. Lim A, Simm PJ, James S, Lee SL-K, Zacharin M. Outcomes of zoledronic acid use in paediatric conditions. Horm Res Paediatr. 2020;93:442–52.

    Article  CAS  PubMed  Google Scholar 

  95. Högler W, Yap F, Little D, Ambler G, McQuade M, Cowell CT. Short-term safety assessment in the use of intravenous zoledronic acid in children. J Pediatr. 2004;145:701–4.

    Article  PubMed  Google Scholar 

  96. Munns CF, Rajab MH, Hong J, Briody J, Högler W, McQuade M, et al. Acute phase response and mineral status following low dose intravenous zoledronic acid in children. Bone. 2007;41:366–70.

    Article  CAS  PubMed  Google Scholar 

  97. Marrani E, Giani T, Simonini G, Cimaz R. Pediatric osteoporosis: diagnosis and treatment considerations. Drugs. 2017;77:679–95.

    Article  PubMed  Google Scholar 

  98. Sarraf KM. Images in clinical medicine. Radiographic zebra lines from cyclical pamidronate therapy. N Engl J Med. 2011;365:e5.

    Article  CAS  PubMed  Google Scholar 

  99. Rauch F, Travers R, Munns C, Glorieux FH. Sclerotic metaphyseal lines in a child treated with pamidronate: histomorphometric analysis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19:1191–3.

    Article  Google Scholar 

  100. Silva ECC, Terreri MTRA, de Castro TCM, Barbosa CPL, Fernandes ARC, Hilário MOE. Sclerotic metaphyseal lines in children and adolescents treated with alendronate. Rev Bras Reumatol. 2010;50:283–90.

    Article  PubMed  Google Scholar 

  101. Land C, Rauch F, Glorieux FH. Cyclical intravenous pamidronate treatment affects metaphyseal modeling in growing patients with osteogenesis imperfecta. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21:374–9.

    Article  CAS  Google Scholar 

  102. Hennedige AA, Jayasinghe J, Khajeh J, Macfarlane TV. Systematic review on the incidence of bisphosphonate related osteonecrosis of the jaw in children diagnosed with osteogenesis imperfecta. J Oral Maxillofac Res. 2013;4:e1.

    Article  PubMed  Google Scholar 

  103. Brown JJ, Ramalingam L, Zacharin MR. Bisphosphonate-associated osteonecrosis of the jaw: does it occur in children? Clin Endocrinol (Oxf). 2008;68:863–7.

    Article  CAS  Google Scholar 

  104. Campos L, Miziara LNB, Gallottini M, Ortega K, Martins F. Medication-related osteonecrosis of the jaw in a Duchenne muscular dystrophy patient. Photodiagnosis Photodyn Ther. 2020;31: 101826.

    Article  CAS  PubMed  Google Scholar 

  105. Anam EA, Rauch F, Glorieux FH, Fassier F, Hamdy R. Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30:1362–8.

    Article  CAS  Google Scholar 

  106. Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19:1779–86.

    Article  CAS  Google Scholar 

  107. van de Laarschot DM, Zillikens MC. Atypical femur fracture in an adolescent boy treated with bisphosphonates for X-linked osteoporosis based on PLS3 mutation. Bone. 2016;91:148–51.

    Article  PubMed  Google Scholar 

  108. Etxebarria-Foronda I, Carpintero P. An atypical fracture in male patient with osteogenesis imperfecta. Clin Cases Miner Bone Metab Off J Ital Soc Osteoporos Miner Metab Skelet Dis. 2015;12:278–81.

    Google Scholar 

  109. Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S. Bisphosphonate-induced osteopetrosis. N Engl J Med. 2003;349:457–63.

    Article  CAS  Google Scholar 

  110. Whyte MP, McAlister WH, Novack DV, Clements KL, Schoenecker PL, Wenkert D. Bisphosphonate-induced osteopetrosis: novel bone modeling defects, metaphyseal osteopenia, and osteosclerosis fractures after drug exposure ceases. J Bone Miner Res Off J Am Soc Bone Miner Res. 2008;23:1698–707.

    Article  Google Scholar 

  111. Rauch F, Cornibert S, Cheung M, Glorieux FH. Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. Bone. 2007;40:821–7.

    Article  CAS  PubMed  Google Scholar 

  112. Sokal A, Elefant E, Leturcq T, Beghin D, Mariette X, Seror R. Pregnancy and newborn outcomes after exposure to bisphosphonates: a case-control study. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2019;30:221–9.

    Article  CAS  Google Scholar 

  113. Canalis E. Mechanisms of glucocorticoid action in bone. Curr Osteoporos Rep. 2005;3:98–102.

    Article  PubMed  Google Scholar 

  114. Adamopoulos IE. Inflammation in bone physiology and pathology. Curr Opin Rheumatol. 2018;30:59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Anonymous. Prolia [Internet]. Eur. Med. Agency. 2018. https://www.ema.europa.eu/en/medicines/human/EPAR/prolia [cited 2021 May 16].

  116. Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, et al. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet. 2011;50:793–807.

    Article  CAS  PubMed  Google Scholar 

  117. Boyce AM. Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep. 2017;15:283–92.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Trejo P, Rauch F, Ward L. Hypercalcemia and hypercalciuria during denosumab treatment in children with osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2018;18:76–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng S, Gaitonde P, Andrew MA, Gibbs MA, Lesko LJ, Schmidt S. Model-based assessment of dosing strategies in children for monoclonal antibodies exhibiting target-mediated drug disposition. CPT Pharmacomet Syst Pharmacol. 2014;3: e138.

    Article  CAS  Google Scholar 

  120. Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hoyer-Kuhn H, Franklin J, Allo G, Kron M, Netzer C, Eysel P, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect–a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16:24–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kobayashi T, Nakamura Y, Suzuki T, Yamaguchi T, Takeda R, Takagi M, et al. Efficacy and safety of denosumab therapy for osteogenesis imperfecta patients with osteoporosis-case series. J Clin Med. 2018;7:479.

    Article  PubMed Central  Google Scholar 

  123. Hoyer-Kuhn H, Rehberg M, Netzer C, Schoenau E, Semler O. Individualized treatment with denosumab in children with osteogenesis imperfecta—follow up of a trial cohort. Orphanet J Rare Dis. 2019;14:219.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12:183–8.

    CAS  PubMed  Google Scholar 

  125. Boyce AM, Chong WH, Yao J, Gafni RI, Kelly MH, Chamberlain CE, et al. Denosumab treatment for fibrous dysplasia. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27:1462–70.

    Article  CAS  Google Scholar 

  126. Grasemann C, Schündeln MM, Hövel M, Schweiger B, Bergmann C, Herrmann R, et al. Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget’s disease. J Clin Endocrinol Metab. 2013;98:3121–6.

    Article  CAS  PubMed  Google Scholar 

  127. Gossai N, Hilgers MV, Polgreen LE, Greengard EG. Critical hypercalcemia following discontinuation of denosumab therapy for metastatic giant cell tumor of bone. Pediatr Blood Cancer. 2015;62:1078–80.

    Article  PubMed  Google Scholar 

  128. Setsu N, Kobayashi E, Asano N, Yasui N, Kawamoto H, Kawai A, et al. Severe hypercalcemia following denosumab treatment in a juvenile patient. J Bone Miner Metab. 2016;34:118–22.

    Article  PubMed  Google Scholar 

  129. Uday S, Gaston CL, Rogers L, Parry M, Joffe J, Pearson J, et al. Osteonecrosis of the jaw and rebound hypercalcemia in young people treated with denosumab for giant cell tumor of bone. J Clin Endocrinol Metab. 2018;103:596–603.

    Article  PubMed  Google Scholar 

  130. Choe M, Smith V, Okcu MF, Wulff J, Gruner S, Huisman TAGM, et al. Treatment of central giant cell granuloma in children with denosumab. Pediatr Blood Cancer. 2021;68: e28778.

    Article  CAS  PubMed  Google Scholar 

  131. Kobayashi E, Setsu N. Osteosclerosis induced by denosumab. Lancet Lond Engl. 2015;385:539.

    Article  Google Scholar 

  132. Dunnion S, Paterson A, Johnston R. Dense sclerotic metaphyseal bands caused by denosumab therapy. Pediatr Radiol. 2020;50:877–8.

    Article  PubMed  Google Scholar 

  133. Wang HD, Boyce AM, Tsai JY, Gafni RI, Farley FA, Kasa-Vubu JZ, et al. Effects of denosumab treatment and discontinuation on human growth plates. J Clin Endocrinol Metab. 2014;99:891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rehberg M, Winzenrieth R, Hoyer-Kuhn H, Duran I, Schoenau E, Semler O. TBS as a tool to differentiate the impact of antiresorptives on cortical and trabecular bone in children with osteogenesis imperfecta. J Clin Densitom Off J Int Soc Clin Densitom. 2019;22:229–35.

    Article  Google Scholar 

  135. Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev [Internet]. 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611487/ [cited 2021 Jun 18].

  136. Adami S, Gatti D, Colapietro F, Fracassi E, Braga V, Rossini M, et al. Intravenous neridronate in adults with osteogenesis imperfecta. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003;18:126–30.

    Article  CAS  Google Scholar 

  137. Letocha AD, Cintas HL, Troendle JF, Reynolds JC, Cann CE, Chernoff EJ, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:977–86.

    Article  CAS  Google Scholar 

  138. Chevrel G, Schott A-M, Fontanges E, Charrin JE, Lina-Granade G, Duboeuf F, et al. Effects of oral alendronate on BMD in adult patients with osteogenesis imperfecta: a 3-year randomized placebo-controlled trial. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21:300–6.

    Article  CAS  Google Scholar 

  139. Orwoll ES, Shapiro J, Veith S, Wang Y, Lapidus J, Vanek C, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Investig. 2014;124:491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gatti D, Rossini M, Viapiana O, Povino MR, Liuzza S, Fracassi E, et al. Teriparatide treatment in adult patients with osteogenesis imperfecta type I. Calcif Tissue Int. 2013;93:448–52.

    Article  CAS  PubMed  Google Scholar 

  141. Bak M, Serdaroglu E, Guclu R. Prophylactic calcium and vitamin D treatments in steroid-treated children with nephrotic syndrome. Pediatr Nephrol Berl Ger [Internet]. Pediatr Nephrol; 2006. https://pubmed.ncbi.nlm.nih.gov/16382319/ [cited 2021 Jun 18].

  142. Rianthavorn P, Pisutikul K, Deekajorndech T, Tepmongkol S, Suphapeetiporn K. Prevention of bone loss in children receiving long-term glucocorticoids with calcium and alfacalcidol or menatetrenone. J Pediatr Endocrinol Metab JPEM. 2012;25:307–12.

    Article  CAS  PubMed  Google Scholar 

  143. Acott PD, Wong JA, Lang BA, Crocker JFS. Pamidronate treatment of pediatric fracture patients on chronic steroid therapy. Pediatr Nephrol Berl Ger. 2005;20:368–73.

    Article  Google Scholar 

  144. Inoue Y, Shimojo N, Suzuki S, Arima T, Tomiita M, Minagawa M, et al. Efficacy of intravenous alendronate for the treatment of glucocorticoid-induced osteoporosis in children with autoimmune diseases. Clin Rheumatol. 2008;27:909–12.

    Article  PubMed  Google Scholar 

  145. Simm PJ, Johannesen J, Briody J, McQuade M, Hsu B, Bridge C, et al. Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis. Bone. 2011;49:939–43.

    Article  CAS  PubMed  Google Scholar 

  146. Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2012;23:2703–11.

    Article  CAS  Google Scholar 

  147. Pazianas M, Rhim AD, Weinberg AM, Su C, Lichtenstein GR. The effect of anti-TNF-alpha therapy on spinal bone mineral density in patients with Crohn’s disease. Ann N Y Acad Sci. 2006;1068:543–56.

    Article  CAS  PubMed  Google Scholar 

  148. Seriolo B, Paolino S, Sulli A, Ferretti V, Cutolo M. Bone metabolism changes during anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann N Y Acad Sci. 2006;1069:420–7.

    Article  CAS  PubMed  Google Scholar 

  149. Sumník Z, Land C, Rieger-Wettengl G, Körber F, Stabrey A, Schoenau E. Effect of pamidronate treatment on vertebral deformity in children with primary osteoporosis. A pilot study using radiographic morphometry. Horm Res. 2004;61:137–42.

    PubMed  Google Scholar 

  150. Melchior R, Zabel B, Spranger J, Schumacher R. Effective parenteral clodronate treatment of a child with severe juvenile idiopathic osteoporosis. Eur J Pediatr. 2005;164:22–7.

    Article  PubMed  Google Scholar 

  151. Kauffman RP, Overton TH, Shiflett M, Jennings JC. Osteoporosis in children and adolescent girls: case report of idiopathic juvenile osteoporosis and review of the literature. Obstet Gynecol Surv. 2001;56:492–504.

    Article  CAS  PubMed  Google Scholar 

  152. Baroncelli GI, Vierucci F, Bertelloni S, Erba P, Zampollo E, Giuca MR. Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients. J Bone Miner Metab. 2013;31:533–43.

    Article  CAS  PubMed  Google Scholar 

  153. Sanghai SR, Shah I. Juvenile osteoporosis in a 5-year-old girl. J Nat Sci Biol Med. 2013;4:476–7.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Celli M, D’Eufemia P, Persiani P, Turchetti A, Febbo A, D’Alfonso Y, et al. Clinical and biochemical response to neridronate treatment in a patient with osteoporosis-pseudoglioma syndrome (OPPG). Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2017;28:3277–80.

    Article  CAS  Google Scholar 

  155. Tüysüz B, Bursalı A, Alp Z, Suyugül N, Laine CM, Mäkitie O. Osteoporosis-pseudoglioma syndrome: three novel mutations in the LRP5 gene and response to bisphosphonate treatment. Horm Res Paediatr. 2012;77:115–20.

    Article  PubMed  Google Scholar 

  156. Zacharin M, Cundy T. Osteoporosis pseudoglioma syndrome: treatment of spinal osteoporosis with intravenous bisphosphonates. J Pediatr. 2000;137:410–5.

    Article  CAS  PubMed  Google Scholar 

  157. Levasseur R. Treatment and management of osteoporosis-pseudoglioma syndrome. Expert Rev Endocrinol Metab. 2008;3:337–48.

    Article  CAS  PubMed  Google Scholar 

  158. Streeten EA, McBride D, Puffenberger E, Hoffman ME, Pollin TI, Donnelly P, et al. Osteoporosis-pseudoglioma syndrome: description of 9 new cases and beneficial response to bisphosphonates. Bone. 2008;43:584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Streeten EA, Ramirez S, Eliades M, Jaimungal S, Chandrasekaran S, Kathleen R, et al. Fractures on bisphosphonates in osteoporosis pseudoglioma syndrome (OPPG): pQCT shows poor bone density and structure. Bone. 2015;77:17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Papadopoulos I, Bountouvi E, Attilakos A, Gole E, Dinopoulos A, Peppa M, et al. Osteoporosis-pseudoglioma syndrome: clinical, genetic, and treatment-response study of 10 new cases in Greece. Eur J Pediatr. 2019;178:323–9.

    Article  CAS  PubMed  Google Scholar 

  161. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375:1532–43.

    Article  CAS  PubMed  Google Scholar 

  162. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377:1417–27.

    Article  CAS  PubMed  Google Scholar 

  163. Tauer JT, Abdullah S, Rauch F. Effect of anti-TGF-β treatment in a mouse model of severe osteogenesis imperfecta. J Bone Miner Res Off J Am Soc Bone Miner Res. 2019;34:207–14.

    Article  CAS  Google Scholar 

  164. Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20:670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McClung MR, O’Donoghue ML, Papapoulos SE, Bone H, Langdahl B, Saag KG, et al. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study. Lancet Diabetes Endocrinol. 2019;7:899–911.

    Article  CAS  PubMed  Google Scholar 

  166. Bishop N, Harrison R, Ahmed F, Shaw N, Eastell R, Campbell M, et al. A randomized, controlled dose-ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25:32–40.

    Article  CAS  Google Scholar 

  167. Zeitlin L, Rauch F, Plotkin H, Glorieux FH. Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics. 2003;111:1030–6.

    Article  PubMed  Google Scholar 

  168. Marginean O, Tamasanu RC, Mang N, Mozos I, Brad GF. Therapy with pamidronate in children with osteogenesis imperfecta. Drug Des Dev Ther. 2017;11:2507–15.

    Article  CAS  Google Scholar 

  169. George S, Weber DR, Kaplan P, Hummel K, Monk HM, Levine MA. Short-term safety of zoledronic acid in young patients with bone disorders: an extensive institutional experience. J Clin Endocrinol Metab. 2015;100:4163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Al-Agha AE, Hayatalhazmi RS. Osteoporosis treatment with zoledronic acid in pediatric population at a university hospital in Western Saudi Arabia. A 13-year experience. Saudi Med J. 2015;36:1312–8.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ward L, Bardai G, Moffatt P, Al-Jallad H, Trejo P, Glorieux FH, et al. Osteogenesis imperfecta type VI in individuals from Northern Canada. Calcif Tissue Int. 2016;98:566–72.

    Article  CAS  PubMed  Google Scholar 

  172. Upfill-Brown A, Bukata S, Bernthal NM, Felsenfeld AL, Nelson SD, Singh A, et al. Use of denosumab in children with osteoclast bone dysplasias: report of three cases. JBMR Plus. 2019;3: e10210.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bar Droma E, Beck-Rosen G, Ilgiyaev A, Fruchtman Y, Abramovitch-Dahan C, Levaot N, et al. Positive outcomes of denosumab treatment in 2 patients with cherubism. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2020;78:2226–34.

    Article  Google Scholar 

  174. Kawamura H, Watanabe S, Asahina I, Moriuchi H, Dateki S, Takashi I. Efficacy and safety of denosumab treatment in a prepubertal patient with cherubism. J Pediatr Endocrinol Metab JPEM. 2020;33:963–6.

    Article  PubMed  Google Scholar 

  175. Ferriero K, Shah B, Yan Y, Khatri S, Caccamese J, Napoli JA, et al. Case report: safety and efficacy of denosumab in four children with Noonan syndrome with multiple giant cell lesions of the jaw. Front Pediatr. 2020;8:515.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lange T, Stehling C, Fröhlich B, Klingenhöfer M, Kunkel P, Schneppenheim R, et al. Denosumab: a potential new and innovative treatment option for aneurysmal bone cysts. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2013;22:1417–22.

    Article  Google Scholar 

  177. Pelle DW, Ringler JW, Peacock JD, Kampfschulte K, Scholten DJ, Davis MM, et al. Targeting receptor-activator of nuclear kappaB ligand in aneurysmal bone cysts: verification of target and therapeutic response. Transl Res J Lab Clin Med. 2014;164:139–48.

    CAS  Google Scholar 

  178. Raux S, Bouhamama A, Gaspar N, Brugières L, Entz-Werlé N, Mallet C, et al. Denosumab for treating aneurysmal bone cysts in children. Orthop Traumatol Surg Res OTSR. 2019;105:1181–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Cimaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Data availability

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costi, S., Giani, T., Orsini, F. et al. Drug Treatment of Low Bone Mass and Other Bone Conditions in Pediatric Patients. Pediatr Drugs 24, 103–119 (2022). https://doi.org/10.1007/s40272-021-00487-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-021-00487-7

Navigation