Skip to main content
Log in

Congenital Long QT Syndromes: Prevalence, Pathophysiology and Management

  • Therapy in Practice
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Long QT syndrome is a genetic disorder associated with life threatening ventricular arrhythmias and sudden death. This inherited arrhythmic disorder exhibits genetic heterogeneity, incomplete penetrance, and variable expressivity. During the past two decades there have been major advancements in understanding the genotype-phenotype correlations in LQTS. This genotype-phenotype relationship can lead to improved management of LQTS. However, development of genotype-specific or mutation-specific management strategies is very challenging. This review describes the pathophysiology of LQTS, genotype-phenotype correlations, and focuses on the management of LQTS. In general, the treatment of LQTS consists of lifestyle modifications, medical therapy with beta-blockers, device and surgical therapy. We further summarize current data on the efficacy of pharmacological treatment options for the three most prevalent LQTS variants including beta-blockers in LQT1, LQT2 and LQT3, sodium channel blockers and ranolazine for LQT3, potassium supplementation and spironolactone for LQT2, and possibly sex hormone-based therapy for LQT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation. 1999;99(4):529–33.

    Article  CAS  PubMed  Google Scholar 

  3. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74.

    Article  PubMed  Google Scholar 

  4. Goldenberg I, Horr S, Moss AJ, Lopes CM, Barsheshet A, McNitt S, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Goldenberg I, Moss AJ, Zareba W. QT interval: how to measure it and what is “normal”. J Cardiovasc Electrophysiol. 2006;17(3):333–6.

    Article  PubMed  Google Scholar 

  6. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. HRS/EHRA/APHRS Expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes expert consensus statement on inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):1932–63.

  7. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88(2):782–4.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5(4):868–77.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Schwartz PJ, Ackerman MJ, George AL Jr, Wilde AA. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013;62(3):169–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res. 2013;99(4):600–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc. 1999;74(11):1088–94.

    Article  CAS  PubMed  Google Scholar 

  12. Moss AJ, Robinson JL, Gessman L, Gillespie R, Zareba W, Schwartz PJ, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol. 1999;84(8):876–9.

    Article  CAS  PubMed  Google Scholar 

  13. Goldenberg I, Thottathil P, Lopes CM, Moss AJ, McNitt S, OU J, et al. Trigger-specific ion-channel mechanisms, risk factors, and response to therapy in type 1 long QT syndrome. Heart Rhythm. 2012;9(1):49–56.

    Article  PubMed  Google Scholar 

  14. Kim JA, Lopes CM, Moss AJ, McNitt S, Barsheshet A, Robinson JL, et al. Trigger-specific risk factors and response to therapy in long QT syndrome type 2. Heart Rhythm. 2010;7(12):1797–805.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  16. Costa J, Lopes CM, Barsheshet A, Moss AJ, Migdalovich D, Ouellet G, et al. Combined assessment of sex- and mutation-specific information for risk stratification in type 1 long QT syndrome. Heart Rhythm. 2012;9(6):892–8.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Migdalovich D, Moss AJ, Lopes CM, Costa J, Ouellet G, Barsheshet A, et al. Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm. 2011;8(10):1537–43.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Seth R, Moss AJ, McNitt S, Zareba W, Andrews ML, Qi M, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007;49(10):1092–8.

    Article  PubMed  Google Scholar 

  19. Barsheshet A, Peterson DR, Moss AJ, Schwartz PJ, Kaufman ES, McNitt S, et al. Genotype-specific QT correction for heart rate and the risk of life-threatening cardiac events in adolescents with congenital long-QT syndrome. Heart Rhythm. 2011;8(8):1207–13.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liu JF, Jons C, Moss AJ, McNitt S, Peterson DR, Qi M, et al. Risk factors for recurrent syncope and subsequent fatal or near-fatal events in children and adolescents with long QT syndrome. J Am Coll Cardiol. 2011;57(8):941–50.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Barsheshet A, Goldenberg I, OU J, Moss AJ, Jons C, Shimizu W, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long-QT syndrome. Circulation. 2012;125(16):1988–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shimizu W, Moss AJ, Wilde AA, Towbin JA, Ackerman MJ, January CT, et al. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol. 2009;54(22):2052–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Moss AJ, Shimizu W, Wilde AA, Towbin JA, Zareba W, Robinson JL, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007;115(19):2481–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292(11):1341–4.

    Article  CAS  PubMed  Google Scholar 

  25. Zareba W, Moss AJ, Locati EH, Lehmann MH, Peterson DR, Hall WJ, et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol. 2003;42(1):103–9.

    Article  PubMed  Google Scholar 

  26. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death). J Am Coll Cardiol. 2006;48(5):e247–346.

    Article  PubMed  Google Scholar 

  27. Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34(40):3109–16.

    Article  PubMed  Google Scholar 

  28. Schwartz PJ, Crotti L. Long QT and short QT syndromes. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 5th ed. Philadelphia: Elsevier; 2009. p. 731–44.

    Google Scholar 

  29. Maron BJ, Chaitman BR, Ackerman MJ, Bayes de Luna A, Corrado D, Crosson JE, et al. Recommendations for physical activity and recreational sports participation for young patients with genetic cardiovascular diseases. Circulation. 2004;109(22):2807–16.

    Article  PubMed  Google Scholar 

  30. Schwartz PJ. The congenital long QT syndromes from genotype to phenotype: clinical implications. J Intern Med. 2006;259(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  31. Moss AJ, Zareba W, Hall WJ, Schwartz PJ, Crampton RS, Benhorin J, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000;101(6):616–23.

    Article  CAS  PubMed  Google Scholar 

  32. Goldenberg I, Bradley J, Moss A, McNitt S, Polonsky S, Robinson JL, et al. Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J Cardiovasc Electrophysiol. 2010;21(8):893–901.

    PubMed Central  PubMed  Google Scholar 

  33. Vincent GM, Schwartz PJ, Denjoy I, Swan H, Bithell C, Spazzolini C, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment “failures”. Circulation. 2009;119(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  34. Viskin S, Halkin A. Treating the long-QT syndrome in the era of implantable defibrillators. Circulation. 2009;119(2):204–6.

    Article  PubMed  Google Scholar 

  35. Ruan Y, Liu N, Napolitano C, Priori SG. Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circ Arrhythm Electrophysiol. 2008;1(4):290–7.

    Article  PubMed  Google Scholar 

  36. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation. 1998;98(21):2314–22.

    Article  CAS  PubMed  Google Scholar 

  37. Tan HL, Bardai A, Shimizu W, Moss AJ, Schulze-Bahr E, Noda T, et al. Genotype-specific onset of arrhythmias in congenital long-QT syndrome: possible therapy implications. Circulation. 2006;114(20):2096–103.

    Article  PubMed  Google Scholar 

  38. Viskin S. Cardiac pacing in the long QT syndrome: review of available data and practical recommendations. J Cardiovasc Electrophysiol. 2000;11(5):593–600.

    Article  CAS  PubMed  Google Scholar 

  39. Matavel A, Medei E, Lopes CM. PKA and PKC partially rescue long QT type 1 phenotype by restoring channel-PIP(2) interactions. Channels (Austin). 2010;4(1):3–11.

    Article  CAS  Google Scholar 

  40. Chatrath R, Bell CM, Ackerman MJ. Beta-blocker therapy failures in symptomatic probands with genotyped long-QT syndrome. Pediatr Cardiol. 2004;25(5):459–65.

    Article  CAS  PubMed  Google Scholar 

  41. Chockalingam P, Crotti L, Girardengo G, Johnson JN, Harris KM, van der Heijden JF, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2: higher recurrence of events under metoprolol. J Am Coll Cardiol. 2012;60(20):2092–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Thottathil P, Acharya J, Moss AJ, Jons C, McNitt S, Goldenberg I, et al. Risk of cardiac events in patients with asthma and long-QT syndrome treated with beta(2) agonists. Am J Cardiol. 2008;102(7):871–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004;109(15):1826–33.

    Article  PubMed  Google Scholar 

  44. Numaguchi H, Johnson JP Jr, Petersen CI, Balser JR. A sensitive mechanism for cation modulation of potassium current. Nat Neurosci. 2000;3(5):429–30.

    Article  CAS  PubMed  Google Scholar 

  45. Sakmann B, Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984;347:641–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang S, Morales MJ, Liu S, Strauss HC, Rasmusson RL. Time, voltage and ionic concentration dependence of rectification of h-erg expressed in Xenopus oocytes. FEBS Lett. 1996;389(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  47. Etheridge SP, Compton SJ, Tristani-Firouzi M, Mason JW. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol. 2003;42(10):1777–82.

    Article  CAS  PubMed  Google Scholar 

  48. Compton SJ, Lux RL, Ramsey MR, Strelich KR, Sanguinetti MC, Green LS, et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation. 1996;94(5):1018–22.

    Article  CAS  PubMed  Google Scholar 

  49. Goldenberg I, Zareba W, Moss AJ. Long QT Syndrome. Curr Probl Cardiol. 2008;33(11):629–94.

    Article  PubMed  Google Scholar 

  50. Nakamura H, Kurokawa J, Bai CX, Asada K, Xu J, Oren RV, et al. Progesterone regulates cardiac repolarization through a nongenomic pathway: an in vitro patch-clamp and computational modeling study. Circulation. 2007;116(25):2913–22.

    Article  CAS  PubMed  Google Scholar 

  51. Odening KE, Choi BR, Liu GX, Hartmann K, Ziv O, Chaves L, et al. Estradiol promotes sudden cardiac death in transgenic long QT type 2 rabbits while progesterone is protective. Heart Rhythm. 2012;9(5):823–32.

    Article  PubMed  Google Scholar 

  52. Kurokawa J, Tamagawa M, Harada N, Honda S, Bai CX, Nakaya H, et al. Acute effects of oestrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol. 2008;586(Pt 12):2961–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sims C, Reisenweber S, Viswanathan PC, Choi BR, Walker WH, Salama G. Sex, age, and regional differences in L-type calcium current are important determinants of arrhythmia phenotype in rabbit hearts with drug-induced long QT type 2. Circ Res. 2008;102(9):e86–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kadish AH, Greenland P, Limacher MC, Frishman WH, Daugherty SA, Schwartz JB. Estrogen and progestin use and the QT interval in postmenopausal women. Ann Noninvasive Electrocardiol. 2004;9(4):366–74.

    Article  PubMed  Google Scholar 

  55. Buber J, Mathew J, Moss AJ, Hall WJ, Barsheshet A, McNitt S, et al. Risk of recurrent cardiac events after onset of menopause in women with congenital long-QT syndrome types 1 and 2. Circulation. 2011;123(24):2784–91.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM, et al. Multiple mechanisms of Na+ channel–linked long-QT syndrome. Circ Res. 1996;78(5):916–24.

    Article  CAS  PubMed  Google Scholar 

  57. Wang DW, Yazawa K, Makita N, George AL Jr, Bennett PB. Pharmacological targeting of long QT mutant sodium channels. J Clin Invest. 1997;99(7):1714–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation. 1995;92(12):3381–6.

    Article  CAS  PubMed  Google Scholar 

  59. Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 2007;116(10):1137–44.

    Article  CAS  PubMed  Google Scholar 

  60. Nagatomo T, January CT, Makielski JC. Preferential block of late sodium current in the LQT3 DeltaKPQ mutant by the class I(C) antiarrhythmic flecainide. Mol Pharmacol. 2000;57(1):101–7.

    CAS  PubMed  Google Scholar 

  61. Benhorin J, Taub R, Goldmit M, Kerem B, Kass RS, Windman I, et al. Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation. 2000;101(14):1698–706.

    Article  CAS  PubMed  Google Scholar 

  62. Windle JR, Geletka RC, Moss AJ, Zareba W, Atkins DL. Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:DeltaKPQ mutation. Ann Noninvasive Electrocardiol. 2001;6(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  63. Moss AJ, Windle JR, Hall WJ, Zareba W, Robinson JL, McNitt S, et al. Safety and efficacy of flecainide in subjects with long QT-3 syndrome (DeltaKPQ mutation): a randomized, double-blind, placebo-controlled clinical trial. Ann Noninvasive Electrocardiol. 2005;10(4 Suppl):59–66.

    Article  PubMed  Google Scholar 

  64. Stokoe KS, Balasubramaniam R, Goddard CA, Colledge WH, Grace AA, Huang CL. Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a ± murine hearts modelling the Brugada syndrome. J Physiol. 2007;581(Pt 1):255–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Anno T, Hondeghem LM. Interactions of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of recovery. Circ Res. 1990;66(3):789–803.

    Article  CAS  PubMed  Google Scholar 

  66. Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation. 2000;102(9):945–7.

    Article  CAS  PubMed  Google Scholar 

  67. Wang DW, Kiyosue T, Sato T, Arita M. Comparison of the effects of class I anti-arrhythmic drugs, cibenzoline, mexiletine and flecainide, on the delayed rectifier K+ current of guinea-pig ventricular myocytes. J Mol Cell Cardiol. 1996;28(5):893–903.

    Article  CAS  PubMed  Google Scholar 

  68. Chaitman BR, Skettino SL, Parker JO, Hanley P, Meluzin J, Kuch J, et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol. 2004;43(8):1375–82.

    Article  CAS  PubMed  Google Scholar 

  69. Chaitman BR, Pepine CJ, Parker JO, Skopal J, Chumakova G, Kuch J, et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA. 2004;291(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  70. Schram G, Zhang L, Derakhchan K, Ehrlich JR, Belardinelli L, Nattel S. Ranolazine: ion-channel-blocking actions and in vivo electrophysiological effects. Br J Pharmacol. 2004;142(8):1300–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110(8):904–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non ST-elevation acute coronary syndrome thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2007;116(15):1647–52.

    Article  CAS  PubMed  Google Scholar 

  73. Wu L, Shryock JC, Song Y, Li Y, Antzelevitch C, Belardinelli L. Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. J Pharmacol Exp Ther. 2004;310(2):599–605.

    Article  CAS  PubMed  Google Scholar 

  74. Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br J Pharmacol. 2006;148(1):16–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Moreno JD, Yang PC, Bankston JR, Grandi E, Bers DM, Kass RS, et al. Ranolazine for congenital and acquired late INa-linked arrhythmias: in silico pharmacological screening. Circ Res. 2013;113(7):e50–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Moss AJ, Zareba W, Schwarz KQ, Rosero S, McNitt S, Robinson JL. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008;19(12):1289–93.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Shimizu W, Aiba T, Antzelevitch C. Specific therapy based on the genotype and cellular mechanism in inherited cardiac arrhythmias. Long QT syndrome and Brugada syndrome. Curr Pharm Des. 2005;11(12):1561–72.

    Article  CAS  PubMed  Google Scholar 

  78. Biermann J, Wu K, Odening KE, Asbach S, Koren G, Peng X, et al. Nicorandil normalizes prolonged repolarisation in the first transgenic rabbit model with long-QT syndrome 1 both in vitro and in vivo. Eur J Pharmacol. 2011;650(1):309–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interests

A. Barsheshet, O. Dotsenko and I. Goldenberg report no conflict of interest relevant to this article. No sources of funding were used to support the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Goldenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsheshet, A., Dotsenko, O. & Goldenberg, I. Congenital Long QT Syndromes: Prevalence, Pathophysiology and Management. Pediatr Drugs 16, 447–456 (2014). https://doi.org/10.1007/s40272-014-0090-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-014-0090-4

Keywords

Navigation