Skip to main content
Log in

JAK Inhibitors for Treatment of Psoriasis: Focus on Selective TYK2 Inhibitors

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite advances in the treatment of psoriasis, there is an unmet need for effective and safe oral treatments. The Janus Kinase–Signal Transducer and Activator of Transcription (JAK–STAT) pathway plays a significant role in intracellular signalling of cytokines of numerous cellular processes, important in both normal and pathological states of immune-mediated inflammatory diseases. Particularly in psoriasis, where the interleukin (IL)-23/IL-17 axis is currently considered the crucial pathogenic pathway, blocking the JAK–STAT pathway with small molecules would be expected to be clinically effective. However, relative non-specificity and low therapeutic index of the available JAK inhibitors have delayed their integration into the therapeutic armamentarium of psoriasis. Current research appears to be focused on Tyrosine kinase 2 (TYK2), the first described member of the JAK family. Data from the Phase II trial of BMS-986165—a selective TYK2 inhibitor—in psoriasis have been published and clinical results are encouraging, with a large Phase III programme ongoing. Further, the selective TYK2 inhibitor PF-06826647 is being tested in moderate-to-severe psoriasis in a Phase II clinical trial. Brepocitinib, a potent TYK2/JAK1 inhibitor, is also being evaluated, as both oral and topical treatment. Results of studies with TYK2 inhibitors will be important in assessing the clinical efficacy and safety of these drugs and their place in the therapeutic armamentarium of psoriasis. This article reviews current data on the impact of JAK inhibitors in the treatment of adult patients with moderate-to-severe psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Langley RGB, Krueger GG, Griffiths CEM. Psoriasis: epidemiology, clinical features, and quality of life. Ann Rheum Dis. 2005;64(Suppl 2):ii18–23.

    PubMed  PubMed Central  Google Scholar 

  2. Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol. 2018;201(6):1605–13.

    CAS  PubMed  Google Scholar 

  3. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140(3):645–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Investig Dermatol. 2009;129(6):1339–50.

    PubMed  Google Scholar 

  5. Papp KA, Griffiths CEM, Gordon K, et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol. 2013;168(4):844–54.

    CAS  PubMed  Google Scholar 

  6. Thaçi D, Blauvelt A, Reich K, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J Am Acad Dermatol. 2015;73(3):400–9.

    PubMed  Google Scholar 

  7. Reich K, Pinter A, Lacour JP, et al. Comparison of ixekizumab with ustekinumab in moderate-to-severe psoriasis: 24-week results from IXORA-S, a phase III study. Br J Dermatol. 2017;177(4):1014–23.

    CAS  PubMed  Google Scholar 

  8. Papp KA, Reich K, Paul C, et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br J Dermatol. 2016;175(2):273–86.

    CAS  PubMed  Google Scholar 

  9. Langley RG, Elewski BE, Lebwohl M, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38.

    PubMed  Google Scholar 

  10. Griffiths CEM, Strober BE, van de Kerkhof P, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med. 2010;362(2):118–28.

    CAS  PubMed  Google Scholar 

  11. Gordon KB, Blauvelt A, Papp KA, et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med. 2016;375(4):345–56.

    CAS  PubMed  Google Scholar 

  12. Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–74.

    CAS  PubMed  Google Scholar 

  13. Papp KA, Langley RG, Lebwohl M, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84.

    CAS  PubMed  Google Scholar 

  14. Reich K, Papp KA, Armstrong AW, et al. Safety of guselkumab in patients with moderate-to-severe psoriasis treated through 100 weeks: a pooled analysis from the randomised VOYAGE 1 and VOYAGE 2 studies. Br J Dermatol. 2019;180(5):1039–49.

    CAS  PubMed  Google Scholar 

  15. Griffiths CEM, Reich K, Lebwohl M, et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet. 2015;386(9993):541–51.

    CAS  PubMed  Google Scholar 

  16. Papp K, Leonardi C, Menter MA, et al. Safety and efficacy of brodalumab for psoriasis after 120 weeks of treatment. J Am Acad Dermatol. 2014;71(6):1183–90 (e3).

    CAS  PubMed  Google Scholar 

  17. Ohtsuki M, Kubo H, Morishima H, Goto R, Zheng R, Nakagawa H. Guselkumab, an anti-interleukin-23 monoclonal antibody, for the treatment of moderate to severe plaque-type psoriasis in Japanese patients: efficacy and safety results from a phase 3, randomized, double-blind, placebo-controlled study. J Dermatol. 2018;45(9):1053–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gordon KB, Blauvelt A, Foley P, et al. Efficacy of guselkumab in subpopulations of patients with moderate-to-severe plaque psoriasis: a pooled analysis of the phase III VOYAGE 1 and VOYAGE 2 studies. Br J Dermatol. 2018;178(1):132–9.

    CAS  PubMed  Google Scholar 

  19. Reich K, Armstrong AW, Foley P, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol. 2017;76(3):418–31.

    CAS  PubMed  Google Scholar 

  20. Griffiths CEM, Papp KA, Kimball AB, et al. Long-term efficacy of guselkumab for the treatment of moderate-to-severe psoriasis: results from the phase 3 VOYAGE 1 trial through 2 years. J Drugs Dermatol. 2018;17(8):826–32.

    CAS  PubMed  Google Scholar 

  21. Langley RG, Tsai T-F, Flavin S, et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: results of the randomized, double-blind, phase III NAVIGATE trial. Br J Dermatol. 2018;178(1):114–23.

    CAS  PubMed  Google Scholar 

  22. Blauvelt A, Papp KA, Griffiths CEM, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-. J Am Acad Dermatol. 2017;76(3):405–17.

    CAS  PubMed  Google Scholar 

  23. Torres T, Filipe P. Small molecules in the treatment of psoriasis. Drug Dev Res. 2015;76(5):215–27.

    CAS  PubMed  Google Scholar 

  24. Bhattacharyya GS. Oral systemic therapy: not all “win-win”. Indian J Med Paediatr Oncol. 2010;31(1):1–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fala L. Otezla (Apremilast), an oral PDE-4 inhibitor, receives FDA approval for the treatment of patients with active psoriatic arthritis and plaque psoriasis. Am Health Drug Benefits. 2015;8(Spec Feature):105–10.

    PubMed  PubMed Central  Google Scholar 

  26. Vangipuram R, Alikhan A. Apremilast for the management of moderate to severe plaque psoriasis. Expert Rev Clin Pharmacol. 2017;10(4):349–60.

    CAS  PubMed  Google Scholar 

  27. Harrison DA. The JAK/STAT pathway. Cold Spring Harb Perspect Biol. 2012;4(3):a011205.

    PubMed  PubMed Central  Google Scholar 

  28. Stark GR, Darnell JE Jr. The JAK–STAT pathway at twenty. Immunity. 2012;36(4):503–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK–STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

    PubMed  PubMed Central  Google Scholar 

  30. Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ. Mechanisms of JAK/STAT signaling in immunity and disease. J Immunol. 2015;194(1):21–7.

    CAS  PubMed  Google Scholar 

  31. Catlett I, Aras U, Liu Y, Bei D, Girgis I, Murthy B, Honczarenko M, Rose S. SAT0226 A first-in-human study of BMS-986165, a selective, potent, allosteric small molecule inhibitor of tyrosine kinase 2 [abstract]. Ann Rheum Dis. 2017;76(Suppl_2):859.

    Google Scholar 

  32. Papp KA, Gordon K, Thaçi D, Morita A, Gooderham M, Foley P, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313–21.

    CAS  PubMed  Google Scholar 

  33. Papp KA, Krueger JG, Feldman SR, Langley RG, Thaci D, Torii H, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study. J Am Acad Dermatol. 2016;74(5):841–50.

    CAS  PubMed  Google Scholar 

  34. Bissonnette R, Luchi M, Fidelus-Gort R, Jackson S, Zhang H, Flores R, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of the safety and efficacy of INCB039110, an oral janus kinase 1 inhibitor, in patients with stable, chronic plaque psoriasis. J Dermatol Treat. 2016;27(4):332–8.

    CAS  Google Scholar 

  35. Banfield C, Scaramozza M, Zhang W, Kieras E, Page KM, Fensome A, et al. The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J Clin Pharmacol. 2018;58(4):434–47.

    CAS  PubMed  Google Scholar 

  36. Schmieder GJ, Draelos ZD, Pariser DM, Banfield C, Cox L, Hodge M, et al. Efficacy and safety of the Janus kinase 1 inhibitor PF-04965842 in patients with moderate-to-severe psoriasis: phase II, randomized, double-blind, placebo-controlled study. Br J Dermatol. 2018;179(1):54–62.

    CAS  PubMed  Google Scholar 

  37. Ludbrook VJ, Hicks KJ, Hanrott KE, Patel JS, Binks MH, Wyres MR, et al. Investigation of selective JAK1 inhibitor GSK2586184 for the treatment of psoriasis in a randomized placebo-controlled phase IIa study. Br J Dermatol. 2016;174(5):985–95.

    CAS  PubMed  Google Scholar 

  38. Papp KA, Menter MA, Abe M, Elewski B, Feldman SR, Gottlieb AB, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo-controlled, phase III trials. Br J Dermatol. 2015;173(4):949–61.

    CAS  PubMed  Google Scholar 

  39. Bachelez H, van de Kerkhof PCM, Strohal R, Kubanov A, Valenzuela F, Lee J-H, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet. 2015;386(9993):552–61.

    CAS  PubMed  Google Scholar 

  40. Krueger J, Clark JD, Suárez-Fariñas M, Fuentes-Duculan J, Cueto I, Wang CQ, et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: a randomized phase 2 study. J Allergy Clin Immunol. 2016;137(4):1079–90.

    CAS  PubMed  Google Scholar 

  41. Papp KA, Menter MA, Strober B, Langley RG, Buonanno M, Wolk R, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77.

    CAS  PubMed  Google Scholar 

  42. Bissonnette R, Iversen L, Sofen H, Griffiths CEM, Foley P, Romiti R, et al. Tofacitinib withdrawal and retreatment in moderate-to-severe chronic plaque psoriasis: a randomized controlled trial. Br J Dermatol. 2015;172(5):1395–406.

    CAS  PubMed  Google Scholar 

  43. Papp KA, Menter MA, Raman M, Disch D, Schlichting DE, Gaich C, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2016;174(6):1266–76.

    CAS  PubMed  Google Scholar 

  44. Mease PJ, Hall S, FitzGerald O, van der Heijde D, Merola JF, Avila-Zapata F, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537–50.

    CAS  PubMed  Google Scholar 

  45. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inahibitors. N Engl J Med. 2017;377(16):1525–36.

    CAS  PubMed  Google Scholar 

  46. Mease P, Coates LC, Helliwell PS, Stanislavchuk M, Rychlewska-Hanczewska A, Dudek A, et al. Efficacy and safety of filgotinib, a selective Janus Kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10162):2367–77.

    CAS  PubMed  Google Scholar 

  47. Forman S, Pariser DM, Poulin Y, Vincent MS, Gilbert SA, Kieras EM, et al. Phase 2A, randomised, double-blind, placebo-controlled study to evaluate efficacy and safety of PF-06700841 in patients with moderate-to- severe plaque psoriasis [abstract]. Exp Dermatol. 2018. https://doi.org/10.1111/exd.13795.

    Article  Google Scholar 

  48. Papp K, Pariser D, Catlin M, Wierz G, Ball G, Akinlade B, et al. A phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2015;173(3):767–76.

    CAS  PubMed  Google Scholar 

  49. Darnell JE Jr, Kerr IM, Stark GR. JAK–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.

    CAS  PubMed  Google Scholar 

  50. Beadling C, Guschin D, Witthuhn BA, Ziemiecki A, Ihle JN, Kerr IM, et al. Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 1994;13(23):5605–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim CP, Cao X. Structure, function, and regulation of STAT proteins. Mol Biosyst. 2006;2(11):536–50.

    CAS  PubMed  Google Scholar 

  52. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322.

    CAS  PubMed  Google Scholar 

  54. Müller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993;366(6451):129–35.

    PubMed  Google Scholar 

  55. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993;74(2):227–36.

    CAS  PubMed  Google Scholar 

  56. Akada H, Akada S, Hutchison RE, Sakamoto K, Wagner KU, Mohi G. Critical role of Jak2 in the maintenance and function of adult hematopoietic stem cells. Stem Cells. 2014;32(7):1878–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Park SO, Wamsley HL, Bae K, Hu Z, Li X, Choe SW, et al. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans. PLoS One. 2013;8(3):e59675.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    CAS  PubMed  Google Scholar 

  59. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    CAS  PubMed  Google Scholar 

  60. Thomis DC, Berg LJ. The role of Jak3 in lymphoid development, activation, and signaling. Curr Opin Immunol. 1997;9(4):541–7.

    CAS  PubMed  Google Scholar 

  61. Cornejo MG, Boggon TJ, Mercher T. JAK3: a two-faced player in hematological disorders. Int J Biochem Cell Biol. 2009;41(12):2376–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Welsch K, Holstein J, Laurence A, Ghoreschi K. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol. 2017;47(7):1096–107.

    CAS  PubMed  Google Scholar 

  63. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995;270(5237):797–800.

    CAS  PubMed  Google Scholar 

  64. Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992;70(2):313–22.

    CAS  PubMed  Google Scholar 

  65. Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramírez-Alejo N, Kilic SS, et al. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015;212(10):1641–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front Biosci (Landmark Ed). 2011;16:3214–32.

    PubMed  Google Scholar 

  67. Seto Y, Nakajima H, Suto A, Shimoda K, Saito Y, Nakayama KI, et al. Enhanced Th2 cell-mediated allergic inflammation in Tyk2-deficient mice. J Immunol. 2003;170(2):1077–83.

    CAS  PubMed  Google Scholar 

  68. Spach KM, Noubade R, McElvany B, Hickey WF, Blankenhorn EP, Teuscher C. A single nucleotide polymorphism in Tyk2 controls susceptibility to experimental allergic encephalomyelitis. J Immunol. 2009;182(12):7776–83.

    CAS  PubMed  Google Scholar 

  69. Bromberg JF. Activation of STAT proteins and growth control. Bioessays. 2001;23(2):161–9.

    CAS  PubMed  Google Scholar 

  70. Delgoffe GM, Vignali DAA. STAT heterodimers in immunity: a mixed message or a unique signal? JAK STAT. 2013;2(1):e23060.

    PubMed  PubMed Central  Google Scholar 

  71. Kim J, Krueger JG. The immunopathogenesis of psoriasis. Dermatol Clin. 2015;33(1):13–23.

    CAS  PubMed  Google Scholar 

  72. Sano S, Chan KS, Carbajal S, Clifford J, Peavey M, Kiguchi K, et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med. 2005;11(1):43–9.

    CAS  PubMed  Google Scholar 

  73. Van der Fits L, Van der Wel LI, Laman JD, Prens EP, Verschuren MCM. In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-α sensitivity is unaltered. J Investig Dermatol. 2004;122(1):51–60.

    PubMed  Google Scholar 

  74. Hald A, Andrés RM, Salskov-Iversen ML, Kjellerup RB, Iversen L, Johansen C. STAT1 expression and activation is increased in lesional psoriatic skin. Br J Dermatol. 2013;168(2):302–10.

    CAS  PubMed  Google Scholar 

  75. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77(5):521–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Monin L, Gaffen SL. Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb Perspect Biol. 2018;10(4):a028522.

    PubMed  PubMed Central  Google Scholar 

  78. Waugh DJJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–41.

    CAS  PubMed  Google Scholar 

  79. Wang X, Lupardus P, LaPorte SL, Garcia KC. Structural biology of shared cytokine receptors. Annu Rev Immunol. 2009;27:29–60.

    PubMed  PubMed Central  Google Scholar 

  80. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Commins S, Steinke JW, Borish L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol. 2008;121(5):1108–11.

    CAS  PubMed  Google Scholar 

  82. Baker SJ, Rane SG, Reddy EP. Hematopoietic cytokine receptor signaling. Oncogene. 2007;26(47):6724–37.

    CAS  PubMed  Google Scholar 

  83. Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science. 1994;266(5187):1042–5.

    CAS  PubMed  Google Scholar 

  84. Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat Rev Immunol. 2014;14(12):783–95.

    CAS  PubMed  Google Scholar 

  85. Schindler C, Plumlee C. Inteferons pen the JAK–STAT pathway. Semin Cell Dev Biol. 2008;19(4):311–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vignali DAA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol. 2012;13(8):722–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Renauld JC. Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol. 2003;3(8):667–76.

    CAS  PubMed  Google Scholar 

  88. Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line: pathways that are shared with and distinct from IL-10. J Biol Chem. 2002;277(37):33676–82.

    CAS  PubMed  Google Scholar 

  89. Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(Pt 2):297–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hershey GKK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111(4):677–90.

    CAS  PubMed  Google Scholar 

  91. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33(2):153–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yao Y, Richman L, Morehouse C, de los Reyes M, Higgs BW, Boutrin A, et al. Type I interferon: potential therapeutic target for psoriasis? PLoS One. 2008;3(7):e2737.

    PubMed  PubMed Central  Google Scholar 

  93. Calautti E, Avalle L, Poli V. Psoriasis: A STAT3-centric view. Int J Mol Sci. 2018;19(1):E171.

    PubMed  Google Scholar 

  94. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25–36.

    CAS  PubMed  Google Scholar 

  95. Damsky W, King BA. JAK inhibitors in dermatology: the promise of a new drug class. J Am Acad Dermatol. 2017;76(4):736–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gao W, McGarry T, Orr C, McCormick J, Veale DJ, Fearon U. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann Rheum Dis. 2016;75(1):311–5.

    CAS  PubMed  Google Scholar 

  97. Paik J, Deeks ED. Tofacitinib: a review in psoriatic arthritis. Drugs. 2019;79(6):655–63.

    CAS  PubMed  Google Scholar 

  98. Hosking AM, Juhasz M, Mesinkovska NA. Topical Janus kinase inhibitors: a review of applications in dermatology. J Am Acad Dermatol. 2018;79(3):535–44.

    CAS  PubMed  Google Scholar 

  99. Winthrop KL, Lebwohl M, Cohen AD, Weinberg JM, Tyring SK, Rottinghaus ST, et al. Herpes zoster in psoriasis patients treated with tofacitinib. J Am Acad Dermatol. 2017;77(2):302–9.

    PubMed  Google Scholar 

  100. Xie F, Yun H, Bernatsky S, Curtis JR. Brief report: risk of gastrointestinal perforation among rheumatoid arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis Rheumatol. 2016;68(11):2612–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Scott IC, Hider SL, Scott DL. Thromboembolism with janus kinase (JAK) inhibitors for rheumatoid arthritis: how real is the risk? Drug Saf. 2018;41(7):645–53.

    CAS  PubMed  Google Scholar 

  102. Harigai M. Growing evidence of the safety of JAK inhibitors in patients with rheumatoid arthritis. Rheumatology (Oxford). 2019;58(Supplement_1):i34–42.

    PubMed  PubMed Central  Google Scholar 

  103. Mease PJ, Kremer J, Cohen S, Curtis JR, Charles-Schoeman C, Loftus EV, et al. Incidence of thromboembolic events in the tofacitinib rheumatoid arthritis, psoriasis, psoriatic arthritis and ulcerative colitis development programs [abstract]. Arthritis Rheumatol. 2017; 69(Suppl 10). https://acrabstracts.org/abstract/incidence-of-thromboembolic-events-in-the-tofacitinib-rheumatoid-arthritis-psoriasis-psoriatic-arthritis-and-ulcerative-colitis-development-programs/. Accessed 2 Oct 2019.

  104. Food and Drug Administration. FDA approves Boxed Warning about increased risk of blood clots and death with higher dose of arthritis and ulcerative colitis medicine tofacitinib (Xeljanz, Xeljanz XR). 2019. https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and. Accessed 2 Oct 2019.

  105. Kim SC, Schneeweiss S, Liu J, Solomon DH. Risk of venous thromboembolism in patients with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2013;65(10):1600–7.

    PubMed  PubMed Central  Google Scholar 

  106. Berekmeri A, Mahmood F, Wittmann M, Helliwell P. Tofacitinib for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol. 2018;14(9):719–30.

    CAS  PubMed  Google Scholar 

  107. European Medicines Agency. Xeljanz: product information]. 2017. https://www.ema.europa.eu/en/medicines/human/EPAR/xeljanz. Accessed 2 Oct 2019.

  108. Food and Drug Administration. Xeljanz: FDA approves new treatment for moderately to severely active ulcerative colitis. 2018. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-moderately-severely-active-ulcerative-colitis. Accessed 2 Oct 2019.

  109. Traynor K. FDA approves tofacitinib for rheumatoid arthritis. Am J Health Syst Pharm. 2012;69(24):2120.

    PubMed  Google Scholar 

  110. European Medicines Agency. European Medicines Agency Assessment report: baricitinib. 2016 https://www.ema.europa.eu/en/documents/assessment-report/olumiant-epar-public-assessment-report_en.pdf. Accessed 2 Oct 2019.

  111. Eli Lilly and Company. Update on Baricitinib. 2017 https://investor.lilly.com/news-releases/news-release-details/lilly-and-incyte-provide-update-baricitinib?releaseid=1034247. Accessed 2 Oct 2019.

  112. Taylor PC, Weinblatt ME, Burmester GR, Rooney TP, Witt S, Walls CD, et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheumatol. 2019;71(7):1042–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mogul A, Corsi K, McAuliffe L. Baricitinib: the second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother. 2019;53(9):947–53.

    CAS  PubMed  Google Scholar 

  114. Food and Drug Administration. Novel Drug Approvals for 2019. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2019. Accessed 18 Oct 2019.

  115. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2, Strange A, Capon F, Spencer CCA, Knight J, Weale ME, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42(11):985–90.

    Google Scholar 

  116. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.

    CAS  PubMed  Google Scholar 

  117. Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE, Jostins L, et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med. 2016;8(363):363ra149.

    PubMed  PubMed Central  Google Scholar 

  118. Burke JR, Cheng L, Gillooly KM, Strnad J, Zupa-Fernandez A, Catlett IM, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. 2019;11(502):eaaw1736.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Torres.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

Miguel Nogueira has no conflicts of interest. Luis Puig has received consultancy and/or speaker’s honoraria from and/or participated in clinical trials sponsored by AbbVie, Almirall, Amgen, Baxalta, Biogen, Boehringer Ingelheim, Celgene, Gebro, Janssen, LEO Pharma, Eli Lilly and Company, Merck-Serono, MSD, Mylan, Novartis, Pfizer, Regeneron, Roche, Sandoz, Samsung-Bioepis, Sanofi, and UCB. Tiago Torres has received consultancy and/or speaker’s honoraria from and/or participated in clinical trials sponsored by AbbVie, Amgen, Arena Pharmaceuticals, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Janssen, Biocad, LEO Pharma, Eli Lilly, MSD, Novartis, Pfizer, Samsung-Bioepis, Sanofi-Genzyme and Sandoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, M., Puig, L. & Torres, T. JAK Inhibitors for Treatment of Psoriasis: Focus on Selective TYK2 Inhibitors. Drugs 80, 341–352 (2020). https://doi.org/10.1007/s40265-020-01261-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01261-8

Navigation