Skip to main content
Log in

Emerging Challenges to the Safe and Effective Use of Methadone for Cancer-Related Pain in Paediatric and Adult Patient Populations

  • Therapy in Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Methadone continues to be an important medication for the treatment of paediatric and adult cancer-related pain. Appropriate patient selection to ensure safe and effective treatment by a team of clinicians who appreciate and are familiar with methadone and its unique pharmacology is crucial. Unlike morphine and other more common opioids, methadone is purported to have involvement with delta-opioid receptor and higher affinity as an N-methyl-d-aspartate-receptor antagonist. Clinically this gives it the advantage of being effective for both nociceptive and neuropathic pain, but also may be useful in the setting of tolerance to other opioids. Methadone also comes in multiple available formulations that can be administrated through a variety of routes beyond the oral route. Challenges with methadone in treating cancer-related pain include drug interactions specifically as it relates to new targeted cancer therapies. Recent guidelines recommend electrocardiogram monitoring with methadone and there is potential for additive cardiac toxicity in the oncology setting. Appropriate dosing of methadone for pain management given age, organ dysfunction, and patients who are on methadone maintenance therapy are also key factors. This article aims to provide clinicians with evidence and clinical practice guidelines for safe and appropriate use of methadone including indication, initiation, and monitoring given its complexity for management of pain in the dynamic oncology setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eap CB, Buclin T, Baumann P. Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clin Pharmacokinet. 2002;41(14):1153–93. https://doi.org/10.2165/00003088-200241140-00003.

    Article  CAS  PubMed  Google Scholar 

  2. Kristensen K, Christensen CB, Christrup LL. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci. 1995;56(2):PL45–50. https://doi.org/10.1016/0024-3205(94)00426-s.

    Article  CAS  PubMed  Google Scholar 

  3. Liu JG, Liao XP, Gong ZH, Qin BY. Methadone-induced desensitization of the delta-opioid receptor is mediated by uncoupling of receptor from G protein. Eur J Pharmacol. 1999;374(2):301–8. https://doi.org/10.1016/s0014-2999(99)00322-2.

    Article  CAS  PubMed  Google Scholar 

  4. Bot G, Blake AD, Li S, Reisine T. Opioid regulation of the mouse delta-opioid receptor expressed in human embryonic kidney 293 cells. Mol Pharmacol. 1997;52(2):272–81. https://doi.org/10.1124/mol.52.2.272.

    Article  CAS  PubMed  Google Scholar 

  5. Liu JG, Liao XP, Gong ZH, Qin BY. The difference between methadone and morphine in regulation of delta-opioid receptors underlies the antagonistic effect of methadone on morphine-mediated cellular actions. Eur J Pharmacol. 1999;373(2–3):233–9. https://doi.org/10.1016/s0014-2999(99)00270-8.

    Article  CAS  PubMed  Google Scholar 

  6. Berger AC, Whistler JL. How to design an opioid drug that causes reduced tolerance and dependence. Ann Neurol. 2010;67(5):559–69. https://doi.org/10.1002/ana.22002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ebert B, Andersen S, Krogsgaard-Larsen P. Ketobemidone, methadone and pethidine are non-competitive N-methyl-d-aspartate (NMDA) antagonists in the rat cortex and spinal cord. Neurosci Lett. 1995;187(3):165–8. https://doi.org/10.1016/0304-3940(95)11364-3.

    Article  CAS  PubMed  Google Scholar 

  8. Gorman AL, Elliott KJ, Inturrisi CE. The d- and l-isomers of methadone bind to the non-competitive site on the N-methyl-d-aspartate (NMDA) receptor in rat forebrain and spinal cord. Neurosci Lett. 1997;223(1):5–8. https://doi.org/10.1016/s0304-3940(97)13391-2.

    Article  CAS  PubMed  Google Scholar 

  9. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl 1):S191–203.

    CAS  PubMed  Google Scholar 

  10. Methadone-associated overdose deaths: Factors contributing to increased deaths and efforts to prevent them. General Accountability Office. 2016. https://perma.cc/9B6M-BWYA. Accessed 10 Oct 2016.

  11. Shimoyama N, Shimoyama M, Elliott KJ, Inturrisi CE. d-Methadone is antinociceptive in the rat formalin test. J Pharmacol Exp Ther. 1997;283(2):648–52.

    CAS  PubMed  Google Scholar 

  12. Davis AM, Inturrisi CE. d-Methadone blocks morphine tolerance and N-methyl-d-aspartate-induced hyperalgesia. J Pharmacol Exp Ther. 1999;289(2):1048–53.

    CAS  PubMed  Google Scholar 

  13. Morley JS, Bridson J, Nash TP, Miles JB, White S, Makin MK. Low-dose methadone has an analgesic effect in neuropathic pain: a double-blind randomized controlled crossover trial. Palliat Med. 2003;17(7):576–87. https://doi.org/10.1191/0269216303pm815oa.

    Article  PubMed  Google Scholar 

  14. Altier N, Dion D, Boulanger A, Choiniere M. Management of chronic neuropathic pain with methadone: a review of 13 cases. Clin J Pain. 2005;21(4):364–9.

    Article  Google Scholar 

  15. Gagnon B, Almahrezi A, Schreier G. Methadone in the treatment of neuropathic pain. Pain Res Manag. 2003;8(3):149–54. https://doi.org/10.1155/2003/236718.

    Article  PubMed  Google Scholar 

  16. Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science. 1991;251(4989):85–7. https://doi.org/10.1126/science.1824728.

    Article  CAS  PubMed  Google Scholar 

  17. Price DD, Mayer DJ, Mao J, Caruso FS. NMDA-receptor antagonists and opioid receptor interactions as related to analgesia and tolerance. J Pain Symptom Manag. 2000;19(1 Suppl):S7–11.

    Article  CAS  Google Scholar 

  18. Popik P, Kozela E, Danysz W. Clinically available NMDA receptor antagonists memantine and dextromethorphan reverse existing tolerance to the antinociceptive effects of morphine in mice. Naunyn Schmiedebergs Arch Pharmacol. 2000;361(4):425–32. https://doi.org/10.1007/s002109900205.

    Article  CAS  PubMed  Google Scholar 

  19. Wong CS, Cherng CH, Luk HN, Ho ST, Tung CS. Effects of NMDA receptor antagonists on inhibition of morphine tolerance in rats: binding at mu-opioid receptors. Eur J Pharmacol. 1996;297(1–2):27–33. https://doi.org/10.1016/0014-2999(95)00728-8.

    Article  CAS  PubMed  Google Scholar 

  20. McPherson ML, Walker KA, Davis MP, Bruera E, Reddy A, Paice J, et al. Safe and appropriate use of methadone in hospice and palliative care: expert consensus white paper. J Pain Symptom Manag. 2019;57(3):635–45. https://doi.org/10.1016/j.jpainsymman.2018.12.001(e4).

    Article  Google Scholar 

  21. Dolophine (methadone) [package insert]. Columbus: Roxane Laboratories; 2006.

  22. Gadel S, Friedel C, Kharasch ED. Differences in methadone metabolism by CYP2B6 variants. Drug Metab Dispos. 2015;43(7):994–1001. https://doi.org/10.1124/dmd.115.064352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen CH, Wang SC, Tsou HH, Ho IK, Tian JN, Yu CJ, et al. Genetic polymorphisms in CYP3A4 are associated with withdrawal symptoms and adverse reactions in methadone maintenance patients. Pharmacogenomics. 2011;12(10):1397–406. https://doi.org/10.2217/pgs.11.103.

    Article  CAS  PubMed  Google Scholar 

  24. Kharasch ED, Regina KJ, Blood J, Friedel C. Methadone pharmacogenetics: CYP2B6 polymorphisms determine plasma concentrations, clearance, and metabolism. Anesthesiology. 2015;123(5):1142–53. https://doi.org/10.1097/ALN.0000000000000867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Somogyi AA, Barratt DT, Ali RL, Coller JK. Pharmacogenomics of methadone maintenance treatment. Pharmacogenomics. 2014;15(7):1007–27. https://doi.org/10.2217/pgs.14.56.

    Article  CAS  PubMed  Google Scholar 

  26. Victorri-Vigneau C, Verstuyft C, Bouquie R, Laforgue EJ, Hardouin JB, Leboucher J, et al. Relevance of CYP2B6 and CYP2D6 genotypes to methadone pharmacokinetics and response in the OPAL study. Br J Clin Pharmacol. 2019;85(7):1538–43. https://doi.org/10.1111/bcp.13936.

    Article  CAS  PubMed  Google Scholar 

  27. Meresaar U, Nilsson MI, Holmstrand J, Anggard E. Single dose pharmacokinetics and bioavailability of methadone in man studied with a stable isotope method. Eur J Clin Pharmacol. 1981;20(6):473–8.

    Article  CAS  Google Scholar 

  28. Portenoy RK. Treatment of cancer pain. Lancet. 2011;377(9784):2236–47. https://doi.org/10.1016/S0140-6736(11)60236-5.

    Article  CAS  PubMed  Google Scholar 

  29. Inturrisi CE. Clinical pharmacology of opioids for pain. Clin J Pain. 2002;18(4 Suppl):S3–13.

    Article  Google Scholar 

  30. Chou R, Cruciani RA, Fiellin DA, Compton P, Farrar JT, Haigney MC, et al. Methadone safety: a clinical practice guideline from the American Pain Society and College on Problems of Drug Dependence, in collaboration with the Heart Rhythm Society. J Pain Off J Am Pain Soc. 2014;15(4):321–37. https://doi.org/10.1016/j.jpain.2014.01.494.

    Article  CAS  Google Scholar 

  31. Ansermot N, Albayrak O, Schlapfer J, Crettol S, Croquette-Krokar M, Bourquin M, et al. Substitution of (R, S)-methadone by (R)-methadone: impact on QTc interval. Arch Intern Med. 2010;170(6):529–36. https://doi.org/10.1001/archinternmed.2010.26.

    Article  CAS  PubMed  Google Scholar 

  32. Turpeinen M, Zanger UM. Cytochrome P450 2B6: function, genetics, and clinical relevance. Drug Metabol Drug Interact. 2012;27(4):185–97. https://doi.org/10.1515/dmdi-2012-0027.

    Article  CAS  PubMed  Google Scholar 

  33. Reddy S, Hui D, El Osta B, de la Cruz M, Walker P, Palmer JL, et al. The effect of oral methadone on the QTc interval in advanced cancer patients: a prospective pilot study. J Palliat Med. 2010;13(1):33–8. https://doi.org/10.1089/jpm.2009.0184.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Karimian P, Atayee RS, Ajayi TA, Edmonds KP. Methadone dose selection for treatment of pain compared with consensus recommendations. J Palliat Med. 2017;20(12):1385–8. https://doi.org/10.1089/jpm.2017.0089.

    Article  PubMed  Google Scholar 

  35. Madden K, Liu D, Bruera E. Attitudes, beliefs, and practices of paediatric palliative care physicians regarding the use of methadone in children with advanced cancer. J Pain Symptom Manag. 2019;57(2):260–5. https://doi.org/10.1016/j.jpainsymman.2018.11.009.

    Article  Google Scholar 

  36. Madden K, Jo E, Williams JL, Liu D, Bruera E. QTc interval prolongation in paediatric and young adult patients on methadone for cancer related pain. J Pain Symptom Manag. 2019. https://doi.org/10.1016/j.jpainsymman.2019.05.021.

    Article  Google Scholar 

  37. Schwinghammer AJ, Wilson MD, Hall BA. Corrected QT interval prolongation in hospitalized paediatric patients receiving methadone. Pediatr Crit Care Med. 2018;19(8):e403–8. https://doi.org/10.1097/PCC.0000000000001601.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kornick CA, Kilborn MJ, Santiago-Palma J, Schulman G, Thaler HT, Keefe DL, et al. QTc interval prolongation associated with intravenous methadone. Pain. 2003;105(3):499–506. https://doi.org/10.1016/s0304-3959(03)00205-7.

    Article  CAS  PubMed  Google Scholar 

  39. Chou R, Weimer MB, Dana T. Methadone overdose and cardiac arrhythmia potential: findings from a review of the evidence for an American Pain Society and College on Problems of Drug Dependence clinical practice guideline. J Pain Off J Am Pain Soc. 2014;15(4):338–65. https://doi.org/10.1016/j.jpain.2014.01.495.

    Article  CAS  Google Scholar 

  40. Ahluwalia SC, Chen C, Raaen L, Motala A, Walling AM, Chamberlin M, et al. A systematic review in support of the national consensus project clinical practice guidelines for quality palliative care, fourth edition. J Pain Symptom Manag. 2018;56(6):831–70. https://doi.org/10.1016/j.jpainsymman.2018.09.008.

    Article  Google Scholar 

  41. Atayee RS, Sam AM, Edmonds KP. Patterns of palliative care pharmacist interventions and outcomes as part of inpatient palliative care consult service. J Palliat Med. 2018;21(12):1761–7. https://doi.org/10.1089/jpm.2018.0093.

    Article  PubMed  Google Scholar 

  42. Nicholson AB, Watson GR, Derry S, Wiffen PJ. Methadone for cancer pain. Cochrane Database Syst Rev. 2017;2:CD003971. https://doi.org/10.1002/14651858.cd003971.pub4.

    Article  PubMed  Google Scholar 

  43. Haumann J, Geurts JW, van Kuijk SM, Kremer B, Joosten EA, van den Beuken-van Everdingen MH. Methadone is superior to fentanyl in treating neuropathic pain in patients with head-and-neck cancer. Eur J Cancer. 2016;65:121–9. https://doi.org/10.1016/j.ejca.2016.06.025.

    Article  CAS  PubMed  Google Scholar 

  44. McNicol ED, Ferguson MC, Schumann R. Methadone for neuropathic pain in adults. Cochrane Database Syst Rev. 2017;5:CD012499. https://doi.org/10.1002/14651858.cd012499.pub2.

    Article  PubMed  Google Scholar 

  45. Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain. 2000;4(1):5–15. https://doi.org/10.1053/eujp.1999.0154.

    Article  CAS  PubMed  Google Scholar 

  46. Chalker C, O’Neill H, Cranfield F. Efficacy of low-dose and/or adjuvant methadone in palliative medicine. BMJ Support Palliat Care. 2019. https://doi.org/10.1136/bmjspcare-2018-001695.

    Article  PubMed  Google Scholar 

  47. Nguyen LM, Rhondali W, De la Cruz M, Hui D, Palmer L, Kang DH, et al. Frequency and predictors of patient deviation from prescribed opioids and barriers to opioid pain management in patients with advanced cancer. J Pain Symptom Manag. 2013;45(3):506–16. https://doi.org/10.1016/j.jpainsymman.2012.02.023.

    Article  Google Scholar 

  48. Atayee RS, Hur GH, Karimian P, Hollenbach KA, Edmonds KP. Methadone inpatient and discharge prescribing patterns for pain at an academic health system. J Palliat Med. 2017;20(2):184–92. https://doi.org/10.1089/jpm.2016.0267.

    Article  PubMed  Google Scholar 

  49. Leidig E, Noller F, Mentzel H. Noninvasive, continuous monitoring of artificial respiration in premature and newborn infants by the constant measurement of respiratory minute volume, oxygen consumption and carbon dioxide release. Klin Padiatr. 1986;198(4):321–5. https://doi.org/10.1055/s-2008-1033880.

    Article  CAS  PubMed  Google Scholar 

  50. Ma JD, Horton JM, Hwang M, Atayee RS, Roeland EJ. A single-center, retrospective analysis evaluating the utilization of the opioid risk tool in opioid-treated cancer patients. J Pain Palliat Care Pharmacother. 2014;28(1):4–9. https://doi.org/10.3109/15360288.2013.869647.

    Article  PubMed  Google Scholar 

  51. Chou R, Fanciullo GJ, Fine PG, Miaskowski C, Passik SD, Portenoy RK. Opioids for chronic noncancer pain: prediction and identification of aberrant drug-related behaviors: a review of the evidence for an American Pain Society and American Academy of Pain Medicine clinical practice guideline. J Pain Off J Am Pain Soc. 2009;10(2):131–46. https://doi.org/10.1016/j.jpain.2008.10.009.

    Article  CAS  Google Scholar 

  52. Kaye AD, Jones MR, Kaye AM, Ripoll JG, Galan V, Beakley BD, et al. Prescription opioid abuse in chronic pain: an updated review of opioid abuse predictors and strategies to curb opioid abuse: part 1. Pain Physician. 2017;20(2S):S93–109.

    Article  Google Scholar 

  53. Kaye AD, Jones MR, Kaye AM, Ripoll JG, Jones DE, Galan V, et al. Prescription opioid abuse in chronic pain: an updated review of opioid abuse predictors and strategies to curb opioid abuse (part 2). Pain Physician. 2017;20(2S):S111–33.

    PubMed  Google Scholar 

  54. Garcia C, Lefkowits C, Pelkofski E, Blackhall L, Duska LR. Prospective screening with the validated opioid risk tool demonstrates gynecologic oncology patients are at low risk for opioid misuse. Gynecol Oncol. 2017;147(2):456–9. https://doi.org/10.1016/j.ygyno.2017.08.008.

    Article  PubMed  Google Scholar 

  55. Clark MR, Hurley RW, Adams MCB. Re-assessing the validity of the opioid risk tool in a tertiary academic pain management center population. Pain Med. 2018. https://doi.org/10.1093/pm/pnx332.

    Article  PubMed  Google Scholar 

  56. Shier ML, Graham JR, Keogh JM. Social work and the emerging opioid epidemic: a literature review. Br J Soc Work. 2019. https://doi.org/10.1093/bjsw/bcy127.

    Article  Google Scholar 

  57. Reid MC, Eccleston C, Pillemer K. Management of chronic pain in older adults. BMJ. 2015;350:h532. https://doi.org/10.1136/bmj.h532.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Loeser JD, Schatman ME. Chronic pain management in medical education: a disastrous omission. Postgrad Med. 2017;129(3):332–5. https://doi.org/10.1080/00325481.2017.1297668.

    Article  PubMed  Google Scholar 

  59. Shah S, Diwan S. Methadone: does stigma play a role as a barrier to treatment of chronic pain? Pain Physician. 2010;13(3):289–93.

    PubMed  Google Scholar 

  60. Beaver JA, Howie LJ, Pelosof L, Kim T, Liu J, Goldberg KB, et al. A 25-year experience of us food and drug administration accelerated approval of malignant hematology and oncology drugs and biologics: a review. JAMA Oncol. 2018;4(6):849–56. https://doi.org/10.1001/jamaoncol.2017.5618.

    Article  PubMed  Google Scholar 

  61. Harvey RD. Managing drug interactions with oral anticancer agents: signals, noise, and echoes. J Oncol Pract. 2019;15(2):91–2. https://doi.org/10.1200/JOP.18.00721.

    Article  PubMed  Google Scholar 

  62. Rogala BG, Charpentier MM, Nguyen MK, Landolf KM, Hamad L, Gaertner KM. Oral anticancer therapy: management of drug interactions. J Oncol Pract. 2019;15(2):81–90. https://doi.org/10.1200/JOP.18.00483.

    Article  PubMed  Google Scholar 

  63. ZYDELIG® (idelalisib) [package insert]. Foster City: Gilead Sciences; 2014.

  64. Bossaer JB, Chakraborty K. Drug interaction between idelalisib and diazepam resulting in altered mental status and respiratory failure. J Oncol Pharm Pract. 2017;23(6):470–2. https://doi.org/10.1177/1078155216653705.

    Article  CAS  PubMed  Google Scholar 

  65. Hong JH. Pharmacokinetic/pharmacodynamic drug evaluation of enzalutamide for treating prostate cancer. Expert Opin Drug Metab Toxicol. 2018;14(3):361–9. https://doi.org/10.1080/17425255.2018.1440288.

    Article  CAS  PubMed  Google Scholar 

  66. ERLEADATM (apalutamide) [package insert]. Horsham: Janssen Pharmaceutical Companies; 2018.

  67. XTANDI® (enzalutamide) [package insert. Northbrook: Astellas Pharma; 2012.

  68. VIZIMPRO® (dacomitinib) [package insert]. New York: Pfizer; 2018.

  69. Administration UFD. Drug development and drug interactions: table of substrates, inhibitors and inducers. Table 3-2: examples of clinical inhibitors for P450-mediated metabolisms (for concomitant use clinical DDI studies and/or drug labeling). 2016. https://perma.cc/YM3X-TXRA.

  70. Conde-Estevez D. Targeted cancer therapy: interactions with other medicines. Clin Transl Oncol. 2017;19(1):21–30. https://doi.org/10.1007/s12094-016-1509-x.

    Article  CAS  PubMed  Google Scholar 

  71. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82. https://doi.org/10.1093/nar/gkx1037.

    Article  CAS  PubMed  Google Scholar 

  72. COPIKTRA (duvelisib) [package insert]. Needham: Verastem Inc; 2018.

  73. XALKORI® (crizotinib) [package insert]. New York: Pfizer Labs; 2016.

  74. ZYKADIA™ (ceritinib) [package insert]. East Hanover: Novartis Pharmaceuticals Corporation; 2014.

  75. GLEEVEC (imatinib mesylate) [package insert]. East Hanover: Novartis Pharmaceuticals Corporation; 2017.

  76. TASIGNA® (nilotinib) [package insert]. East Hanover: Novartis Pharmaceuticals Corporation; 2018.

  77. KISQALI® (ribociclib) [package insert]. East Hanover: Novartis Pharmaceuticals Corporation; 2018.

  78. TARGRETIN® (bexarotene) [package insert]. St. Petersburg: Catalent Pharma Solutions LLC; 2015.

  79. TAFINLAR (dabrafenib) [package insert]. Research Triangle Park: GlaxoSmithKline; 2014.

  80. LORBRENA® (lorlatinib) [package insert]. New York: Pfizer Labs; 2018.

  81. ZYTIGA® (abiraterone acetate) [package insert]. Horsham: Janssen Biotech, Inc; 2019.

  82. Naing A, Veasey-Rodrigues H, Hong DS, Fu S, Falchook GS, Wheler JJ, et al. Electrocardiograms (ECGs) in phase I anticancer drug development: the MD Anderson Cancer Center experience with 8518 ECGs. Ann Oncol. 2012;23(11):2960–3. https://doi.org/10.1093/annonc/mds130.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Porta-Sanchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc. 2017. https://doi.org/10.1161/jaha.117.007724.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018;19(9):e447–58. https://doi.org/10.1016/S1470-2045(18)30457-1.

    Article  CAS  PubMed  Google Scholar 

  85. Woosley RL, Heise CW, Gallo T, et al: QTdrugs list. https://www.crediblemeds.org/. Accessed 11 June 2019.

  86. TRISENOX® (arsenic trioxide) [package insert]. North Wales: Teva Pharmaceuticals USA, Inc; 2019.

  87. TREANDA® (bendamustine hydrochloride) [package insert]. Frazer: Cephalon, Inc; 2008.

  88. VELCADE ® (bortezomib) [package insert]. Cambridge: Millennium Pharmaceuticals, Inc; 2014.

  89. BOSULIF® (bosutinib) [package insert]. New York: Pfizer Labs; 2012.

  90. CABOMETYX™ (cabozantinib) [package insert]. South San Francisco: Exelixis, Inc; 2016.

  91. XELODA (capecitabine) [package insert]. South San Francisco: Genentech USA, Inc; 2015.

  92. COTELLIC (cobimetinib) [package insert]. South San Francisco: Genentech USA, Inc; 2015.

  93. SPRYCEL® (dasatinib) [package insert]. Princeton: Bristol-Myers Squibb Company; 2010.

  94. BRAFTOVI™ (encorafenib) [package insert]. Boulder: Array BioPharma Inc; 2018.

  95. HALAVEN™ (eribulin mesylate) [package insert]. Woodcliff Lake: Eisai Inc; 2010.

  96. FLUOROURACIL injection [package insert]. Irvine: Spectrum Pharmaceuticals, Inc; 2016.

  97. XOSPATA® (gilteritinib) [package insert]. Northbrook: Astellas Pharma US, Inc; 2018.

  98. DAURISMOTM (glasdegib) [package insert]. New York: Pfizer Labs; 2018.

  99. BESPONSA (inotuzumab ozogamicin) [package insert]. Philadelphia: Wyeth Pharmaceuticals, Inc; 2017.

  100. TIBSOVO® (ivosidenib tablets) [package insert]. Cambridge, MA: Agios Pharmaceuticals, Inc; 2018.

  101. TYKERB (lapatinib) [package insert]. East Hanover: Novartis Pharmaceuticals Corporation: 2018.

  102. LENVIMA (lenvatinib) [package insert]. Woodcliff Lake: Eisai Inc; 2015.

  103. RYDAPT® (midostaurin) [package insert]. East Hanover: Novartis Pharmaceuticals Corporation; 2017.

  104. TAGRISSO® (osimertinib) [package insert]. Wilmington: AstraZeneca Pharmaceuticals LP; 2018.

  105. ELOXATIN (oxaliplatin) [package insert]. Bridgewater: Sanofi-aventis U.S. LLC; 2011.

  106. Hancox JC, Caves RE, Choisy SC, James AF. QT interval prolongation and torsades de pointes with oxaliplatin. Ther Adv Drug Saf. 2016;7(6):261–3. https://doi.org/10.1177/2042098616666081.

    Article  PubMed  PubMed Central  Google Scholar 

  107. FARYDAK® (panobinostat) [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2015.

  108. VOTRIENT (pazopanib) [package insert]. Research Triangle Park: GlaxoSmithKline; 2012.

  109. NEXAVAR (sorafenib) [package insert]. Wayne: Bayer HealthCare Pharmaceuticals Inc; 2010.

  110. SUTENT® (sunitinib malate) [package insert]. New York: Pfizer Labs; 2011.

  111. SOLTAMOX® (tamoxifen citrate) [package insert]. Raleigh: Midatech Pharma US Inc; 2018.

  112. Duan J, Tao J, Zhai M, Li C, Zhou N, Lv J, et al. Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: current evidence and future research perspectives. Oncotarget. 2018;9(39):25738–49. https://doi.org/10.18632/oncotarget.25008.

    Article  PubMed  PubMed Central  Google Scholar 

  113. LONSURF (trifluridine and tipiracil) [package insert]. Princeton: Taiho Oncology, Inc; 2015.

  114. CAPRELSA® (vandetanib) [package insert]. Wilmington: AstraZeneca Pharmaceuticals LP; 2014.

  115. ZELBORAF® (vemurafenib) [package insert]. South San Francisco: Genentech USA, Inc; 2017.

  116. ZOLINZA® (vorinostat) [package insert]. Whitehouse Station: Merck & Co., Inc; 2018.

  117. van Ojik AL, Jansen PA, Brouwers JR, van Roon EN. Treatment of chronic pain in older people: evidence-based choice of strong-acting opioids. Drugs Aging. 2012;29(8):615–25. https://doi.org/10.2165/11632620-000000000-00000.

    Article  PubMed  Google Scholar 

  118. Friedrichsdorf SJ. From tramadol to methadone: opioids in the treatment of pain and dyspnea in paediatric palliative care. Clin J Pain. 2019;35(6):501–8. https://doi.org/10.1097/AJP.0000000000000704.

    Article  PubMed  Google Scholar 

  119. Farese RV. Phospholipid signaling systems in insulin action. Am J Med. 1988;85(5A):36–43. https://doi.org/10.1016/0002-9343(88)90396-8.

    Article  CAS  PubMed  Google Scholar 

  120. Baxter LE Sr, Campbell A, Deshields M, Levounis P, Martin JA, McNicholas L, et al. Safe methadone induction and stabilization: report of an expert panel. J Addict Med. 2013;7(6):377–86. https://doi.org/10.1097/01.ADM.0000435321.39251.d7.

    Article  CAS  PubMed  Google Scholar 

  121. Buster MC, van Brussel GH, van den Brink W. An increase in overdose mortality during the first 2 weeks after entering or re-entering methadone treatment in Amsterdam. Addiction. 2002;97(8):993–1001.

    Article  Google Scholar 

  122. Zador DA, Sunjic SD. Methadone-related deaths and mortality rate during induction into methadone maintenance, New South Wales, 1996. Drug Alcohol Rev. 2002;21(2):131–6. https://doi.org/10.1080/09595230220139028.

    Article  PubMed  Google Scholar 

  123. Parsons HA, de la Cruz M, El Osta B, Li Z, Calderon B, Palmer JL, et al. Methadone initiation and rotation in the outpatient setting for patients with cancer pain. Cancer. 2010;116(2):520–8. https://doi.org/10.1002/cncr.24754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Madden K, Park M, Liu D, Bruera E. Practices, attitudes, and beliefs of palliative care physicians regarding the use of methadone and other long-acting opioids in children with advanced cancer. J Palliat Med. 2018;21(10):1408–13. https://doi.org/10.1089/jpm.2017.0670.

    Article  PubMed  Google Scholar 

  125. Toombs JD, Kral LA. Methadone treatment for pain states. Am Fam Physician. 2005;71(7):1353–8.

    PubMed  Google Scholar 

  126. Gazelle G, Fine PG. Methadone for the treatment of pain #75. J Palliat Med. 2003;6(4):620–1. https://doi.org/10.1089/109662103768253740.

    Article  CAS  PubMed  Google Scholar 

  127. Walker PW, Palla S, Pei BL, Kaur G, Zhang K, Hanohano J, et al. Switching from methadone to a different opioid: what is the equianalgesic dose ratio? J Palliat Med. 2008;11(8):1103–8. https://doi.org/10.1089/jpm.2007.0285.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mercadante S, Casuccio A, Calderone L. Rapid switching from morphine to methadone in cancer patients with poor response to morphine. J Clin Oncol. 1999;17(10):3307–12. https://doi.org/10.1200/JCO.1999.17.10.3307.

    Article  CAS  PubMed  Google Scholar 

  129. Mercadante S, Casuccio A, Fulfaro F, Groff L, Boffi R, Villari P, et al. Switching from morphine to methadone to improve analgesia and tolerability in cancer patients: a prospective study. J Clin Oncol. 2001;19(11):2898–904. https://doi.org/10.1200/JCO.2001.19.11.2898.

    Article  CAS  PubMed  Google Scholar 

  130. Davies D, DeVlaming D, Haines C. Methadone analgesia for children with advanced cancer. Pediatr Blood Cancer. 2008;51(3):393–7. https://doi.org/10.1002/pbc.21584.

    Article  PubMed  Google Scholar 

  131. Eyler EC. Chronic and acute pain and pain management for patients in methadone maintenance treatment. Am J Addict. 2013;22(1):75–83. https://doi.org/10.1111/j.1521-0391.2013.00308.x.

    Article  PubMed  Google Scholar 

  132. Carr DB, Goudas LC. Acute pain. Lancet. 1999;353(9169):2051–8. https://doi.org/10.1016/S0140-6736(99)03313-9.

    Article  CAS  PubMed  Google Scholar 

  133. Alford DP, Compton P, Samet JH. Acute pain management for patients receiving maintenance methadone or buprenorphine therapy. Ann Intern Med. 2006;144(2):127–34. https://doi.org/10.7326/0003-4819-144-2-200601170-00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mehta V, Langford RM. Acute pain management for opioid dependent patients. Anaesthesia. 2006;61(3):269–76. https://doi.org/10.1111/j.1365-2044.2005.04503.x.

    Article  CAS  PubMed  Google Scholar 

  135. Blinderman CD, Sekine R, Zhang B, Nillson M, Shaiova L. Methadone as an analgesic for patients with chronic pain in methadone maintenance treatment programs (MMTPs). J Opioid Manag. 2009;5(2):107–14.

    Article  Google Scholar 

  136. Kreek MJ, Bencsath FA, Fanizza A, Field FH. Effects of liver disease on fecal excretion of methadone and its unconjugated metabolites in maintenance patients. Quantitation by direct probe chemical ionization mass spectrometry. Biomed Mass Spectrom. 1983;10(10):544–9. https://doi.org/10.1002/bms.1200101003.

    Article  CAS  PubMed  Google Scholar 

  137. Kreek MJ, Schecter AJ, Gutjahr CL, Hecht M. Methadone use in patients with chronic renal disease. Drug Alcohol Depend. 1980;5(3):197–205.

    Article  CAS  Google Scholar 

  138. Mallappallil M, Sabu J, Friedman EA, Salifu M. What do we know about opioids and the kidney? Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18010223.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Davis M. Cholestasis and endogenous opioids: liver disease and exogenous opioid pharmacokinetics. Clin Pharmacokinet. 2007;46(10):825–50. https://doi.org/10.2165/00003088-200746100-00002.

    Article  CAS  PubMed  Google Scholar 

  140. Novick DM, Kreek MJ, Fanizza AM, Yancovitz SR, Gelb AM, Stenger RJ. Methadone disposition in patients with chronic liver disease. Clin Pharmacol Ther. 1981;30(3):353–62. https://doi.org/10.1038/clpt.1981.172.

    Article  CAS  PubMed  Google Scholar 

  141. Chandok N, Watt KD. Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc. 2010;85(5):451–8. https://doi.org/10.4065/mcp.2009.0534.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Oliverio C, Malone N, Rosielle DA. Opoid use in liver failure #260. J Palliat Med. 2012;15(12):1389–91. https://doi.org/10.1089/jpm.2012.9543.

    Article  PubMed  Google Scholar 

  143. Potosek J, Curry M, Buss M, Chittenden E. Integration of palliative care in end-stage liver disease and liver transplantation. J Palliat Med. 2014;17(11):1271–7. https://doi.org/10.1089/jpm.2013.0167.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bruera E, Palmer JL, Bosnjak S, Rico MA, Moyano J, Sweeney C, et al. Methadone versus morphine as a first-line strong opioid for cancer pain: a randomized, double-blind study. J Clin Oncol. 2004;22(1):185–92. https://doi.org/10.1200/JCO.2004.03.172.

    Article  CAS  PubMed  Google Scholar 

  145. Ripamonti C, Groff L, Brunelli C, Polastri D, Stavrakis A, De Conno F. Switching from morphine to oral methadone in treating cancer pain: what is the equianalgesic dose ratio? J Clin Oncol. 1998;16(10):3216–21. https://doi.org/10.1200/JCO.1998.16.10.3216.

    Article  CAS  PubMed  Google Scholar 

  146. Madden K, Mills S, Dibaj S, Williams JL, Liu D, Bruera E. Methadone as the initial long-acting opioid in children with advanced cancer. J Palliat Med. 2018;21(9):1317–21. https://doi.org/10.1089/jpm.2017.0712.

    Article  PubMed  Google Scholar 

  147. Habashy C, Springer E, Hall EA, Anghelescu DL. Methadone for pain management in children with cancer. Paediatr Drugs. 2018;20(5):409–16. https://doi.org/10.1007/s40272-018-0304-2.

    Article  PubMed  Google Scholar 

  148. LeBlanc Z, Vance C, Payne J, Zhang J, Hilliard L, Lebensburger JD, et al. Management of severe chronic pain with methadone in paediatric patients with sickle cell disease. Pediatr Blood Cancer. 2018;65(8):e27084. https://doi.org/10.1002/pbc.27084.

    Article  CAS  PubMed  Google Scholar 

  149. Horst J, Frei-Jones M, Deych E, Shannon W, Kharasch ED. Pharmacokinetics and analgesic effects of methadone in children and adults with sickle cell disease. Pediatr Blood Cancer. 2016;63(12):2123–30. https://doi.org/10.1002/pbc.26207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Busse J, Gottlieb D, Ferreras K, Bain J, Schechter W. Pharmacological management of severe neuropathic pain in a case of eosinophilic meningitis related to angiostrongylus cantonensis. Case Rep Anesthesiol. 2018;2018:5038272. https://doi.org/10.1155/2018/5038272.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yazde Puleio ML, Gomez KV, Majdalani A, Pigliapoco V, Santos Chocler G. Opioid treatment for mixed pain in paediatric patients assisted by the Palliative Care team. Five years of experience. Arch Argent Pediatr. 2018;116(1):62–4. https://doi.org/10.5546/aap.2018.eng.62.

    Article  PubMed  Google Scholar 

  152. Hui D, Nooruddin Z, Didwaniya N, Dev R, De La Cruz M, Kim SH, et al. Concepts and definitions for “actively dying,” “end of life,” “terminally ill,” “terminal care,” and “transition of care”: a systematic review. J Pain Symptom Manag. 2014;47(1):77–89. https://doi.org/10.1016/j.jpainsymman.2013.02.021.

    Article  Google Scholar 

  153. Zimmerman KO, Hornik CP, Ku L, Watt K, Laughon MM, Bidegain M, et al. Sedatives and analgesics given to infants in neonatal intensive care units at the end of life. J Pediatr. 2015;167(2):299–304. https://doi.org/10.1016/j.jpeds.2015.04.059.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Hui D, dos Santos R, Chisholm G, Bansal S, Silva TB, Kilgore K, et al. Clinical signs of impending death in cancer patients. Oncologist. 2014;19(6):681–7. https://doi.org/10.1634/theoncologist.2013-0457.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hui D, Dos Santos R, Chisholm G, Bansal S, Souza Crovador C, Bruera E. Bedside clinical signs associated with impending death in patients with advanced cancer: preliminary findings of a prospective, longitudinal cohort study. Cancer. 2015;121(6):960–7. https://doi.org/10.1002/cncr.29048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang J, Zhang C, Li Q, Zhang J, Gu X, Zhao W, et al. C-Reactive protein/albumin ratio is an independent prognostic predictor of survival in advanced cancer patients receiving palliative care. J Palliat Med. 2019. https://doi.org/10.1089/jpm.2019.0102.

    Article  PubMed  Google Scholar 

  157. Miyamoto T, Fujitani M, Fukuyama H, Hatanaka S, Koizumi Y, Kawabata A. The C-reactive protein/albumin ratio is useful for predicting short-term survival in cancer and noncancer patients. J Palliat Med. 2019;22(5):532–7. https://doi.org/10.1089/jpm.2018.0404.

    Article  PubMed  Google Scholar 

  158. Blinderman CD, Billings JA. Comfort care for patients dying in the hospital. N Engl J Med. 2015;373(26):2549–61. https://doi.org/10.1056/NEJMra1411746.

    Article  CAS  PubMed  Google Scholar 

  159. Arthur J, Reddy A. Opioid prescribing in an opioid crisis: What basic skills should an oncologist have regarding opioid therapy? Curr Treat Options Oncol. 2019;20(5):39.

    Article  Google Scholar 

  160. Arthur J, Bruera E. Balancing opioid analgesia with the risk of nonmedical opioid use in patients with cancer. Nat Rev Clin Oncol. 2018;16(4):213–26.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia S. Atayee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edmonds, K.P., Saunders, I.M., Willeford, A. et al. Emerging Challenges to the Safe and Effective Use of Methadone for Cancer-Related Pain in Paediatric and Adult Patient Populations. Drugs 80, 115–130 (2020). https://doi.org/10.1007/s40265-019-01234-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01234-6

Navigation