Skip to main content
Log in

From DNA Sequencing to Clinical Trials: Finding New Targeted Drugs for Acute Myeloid Leukemia

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by clonal expansion of myeloid progenitor cells, resulting in disturbed hematopoiesis and bone marrow failure. For decades, AML therapy was relatively straightforward: clinicians assessed whether the patient was fit or unfit for standard chemotherapy and selected the treatment from among limited choices. With the advent of high-throughput sequencing technologies, significant progress has been made in unraveling the AML genome and understanding leukemogenesis driven by recurrent mutations in signaling and kinase pathways, DNA methylation, and spliceosome complex genes. We are now poised to see our research-based advances translate clinically into the treatment of patients with AML. As recently as within the last 2 years, the United States Food and Drug Administration (FDA) approved eight novel therapies for patients with AML. In this review, we discuss recently approved agents targeting fms-like tyrosine kinase 3 (FLT3), isocitrate dehydrogenase (IDH), B-cell lymphoma-2 (BCL-2), and other promising novel AML agents that are in late stages of clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cancer Genome Atlas Research N, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.

    Article  CAS  Google Scholar 

  2. DiNardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. Hematology Am Soc Hematol Educ Program. 2016;2016(1):348–55.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 1991;65(7):1143–52.

    Article  CAS  PubMed  Google Scholar 

  4. Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D. Murine FLT3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene. 1991;6(9):1641–50.

    CAS  PubMed  Google Scholar 

  5. Birg F, Courcoul M, Rosnet O, et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood. 1992;80(10):2584–93.

    CAS  PubMed  Google Scholar 

  6. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.

    CAS  PubMed  Google Scholar 

  7. Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Program. 2013;2013:220–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.

    Article  CAS  PubMed  Google Scholar 

  9. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Propper DJ, McDonald AC, Man A, et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol. 2001;19(5):1485–92.

    Article  CAS  PubMed  Google Scholar 

  11. Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  12. Stone RM, Fischer T, Paquette R, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26(9):2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med. 2017;377(5):454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dionne CA, Camoratto AM, Jani JP, et al. Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res. 1998;4(8):1887–98.

    CAS  PubMed  Google Scholar 

  15. Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10):3669–76.

    Article  CAS  PubMed  Google Scholar 

  16. Knapper S, Russell N, Gilkes A, et al. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML. Blood. 2017;129(9):1143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kane RC, Farrell AT, Saber H, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121(23):4655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rollig C, Serve H, Huttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691–9.

    Article  CAS  PubMed  Google Scholar 

  20. Fathi A, Levis M. FLT3 inhibitors: a story of the old and the new. Curr Opin Hematol. 2011;18(2):71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levis M. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Future Oncol. 2014;10(9):1571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cortes JE, Kantarjian H, Foran JM, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31(29):3681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cortes J. Final results of a Phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients ≥ 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood. 2012;2012:48 (Proc ASH, Abtract 48).

    Google Scholar 

  24. Levis MJ, Perl AE, Dombret H, Döhner H, Steffen B, Rousselot P, Martinelli G, Estey EH, Burnett AK, Gammon G, Trone D, Leo E, Cortes JE. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation. ASH Abstract. 2012;673:2012.

    Google Scholar 

  25. Cortes J, Khaled S, Martinelli G, Perl AE, Ganguly S, Russell N, Krämer A, Dombret H, Hogge D, Jonas BA, Yu-Hung Leung A, Mehta P, Montesinos P, Radsak M, Sica S, Arunachalam M, Holmes M, Kobayashi K, Namuyinga R, Ge N, Yver A, Zhang Y, Levis MJ, EHA Library. Quizartinib significantly prolongs overall survival in patients with FLT3-internal tandem duplication–mutated (MUT) relapsed/refractory AML in the phase 3, randomized, controlled quantum-R trial. EHA Abstract LB2600. 2018.

  26. Swaminathan M, Kantarjian HM, Daver N, Borthakur G, Ohanian M, Kadia T, DiNardo CD, Jain N, Estrov Z, Ferrajoli A, Garcia-Manero G, Konopleva M, Andreeff M, Pemmaraju N, Jabbour EJ, Wierda WG, Ravandi F, Pinsoy MR, Cortes JE. The combination of quizartinib with azacitidine or low dose cytarabine is highly active in patients (Pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood. 2017 (abstract 723).

  27. Cortes JE, Perl AE, Dombret H, Kayser S, Steffen B, Rousselot P, Martinelli G, Estey EH, Burnett AK, Gammon G, Trone D, Leo E, Levis MJ. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients ≥ 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. ASH Abstr. 2012;48:2012.

    Google Scholar 

  28. Galanis A, Ma H, Rajkhowa T, et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood. 2014;123(1):94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cortes JE, Kantarjian HM, Kadia TM, Borthakur G, Konopleva M, Garcia-Manero G, Daver NG, Pemmaraju N, Jabbour E, Estrov Z, Ramachandran A, Paradela J, Pond B, Ravandi F, Vusirikala M, Patel PA, Levis MJ, Perl AE, Andreeff M, Collins R. Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply relapsed FLT3-ITD and D835 AML. ASCO meeting abtract 7008. 2016.

  30. Wang ES, Tallman MS, Stone RM, Walter RB, Karanes C, Jain V, Collins RH. Low relapse rate in younger patients ≤ 60 years old with newly diagnosed FLT3-mutated acute myeloid leukemia (AML) treated with crenolanib and cytarabine/anthracycline chemotherapy. ASH Abstract 566. 2017.

  31. Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017;18(8):1061–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pratz K, Cherry M, Altman JK, Cooper BW, Cruz JC, Jurcic JG, Levis MJ, Lin TL, Perl AE, Podoltsev NA, Schiller GJ, Liu C, Bahceci E. Preliminary results from a phase 1 study of gilteritinib in combination with induction and consolidation chemotherapy in subjects with newly diagnosed acute myeloid leukemia. ASH Abstract #722. 2017.

  33. Esteve J, Schots J, Del Castillo TB, Lee J-H, Wang ES, Bahceci E. Multicenter, open-label, 3-arm study of gilteritinib, gilteritinib plus azacitidine, or azacitidine alone in newly diagnosed FLT3 mutated (FLT3mut+) acute myeloid leukemia (AML) patients ineligible for intensive induction chemotherapy: findings from the safety cohort. Ash Abstract 2736. 2018.

  34. Perl AEGM, Cortes JE, Neubauer A, Berman E, Paolini S, Montesinos P, Baer MR, MJ Levis. Gilteritinib significantly prolongs overall survival in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML): results from the Phase III ADMIRAL trial. ACCR Meeting abstract #CT184. 2019.

  35. Kohl TM, Schnittger S, Ellwart JW, Hiddemann W, Spiekermann K. KIT exon 8 mutations associated with core-binding factor (CBF)-acute myeloid leukemia (AML) cause hyperactivation of the receptor in response to stem cell factor. Blood. 2005;105(8):3319–21.

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Xie H, Wang H, et al. Prognostic Significance of KIT mutations in core-binding factor acute myeloid leukemia: a systematic review and meta-analysis. PLoS One. 2016;11(1):e0146614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Allen C, Hills RK, Lamb K, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 2013;27(9):1891–901.

    Article  CAS  PubMed  Google Scholar 

  38. Marcucci G, Geyer S, Zhao W, Caroll AJ, Bucci D, Uy GL, Blum W, Pardee T, Wetzler M, Stock W, Kolitz JE, Eisfeld A-K, Bloomfield CD, Stone RM, Larson RA. Adding KIT inhibitor dasatinib (DAS) to chemotherapy overcomes the negative impact of kit mutation/over-expression in core binding factor (CBF) acute myeloid leukemia (AML): results from CALGB 10801 (Alliance). ASH Abstract 124. 2014.

  39. Paschka P, Schlenk RF, Weber D, et al. Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia-results of the AMLSG 11-08 trial. Leukemia. 2018.

  40. Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007;1773(8):1177–95.

    Article  CAS  PubMed  Google Scholar 

  41. Burgess MR, Hwang E, Firestone AJ, et al. Preclinical efficacy of MEK inhibition in Nras-mutant AML. Blood. 2014;124(26):3947–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borthakur G, Popplewell L, Boyiadzis M, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122(12):1871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jain N, Curran E, Iyengar NM, et al. Phase II study of the oral MEK inhibitor selumetinib in advanced acute myelogenous leukemia: a University of Chicago phase II consortium trial. Clin Cancer Res. 2014;20(2):490–8.

    Article  CAS  PubMed  Google Scholar 

  44. Brinda B, Khan I, Parkin B, Konig H. The rocky road to personalized medicine in acute myeloid leukaemia. J Cell Mol Med. 2018;22(3):1411–27.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, et al. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling. Cell. 2016;165(3):643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Navada SC, Fruchtman SM, Odchimar-Reissig R, et al. A phase 1/2 study of rigosertib in patients with myelodysplastic syndromes (MDS) and MDS progressed to acute myeloid leukemia. Leuk Res. 2018;64:10–6.

    Article  CAS  PubMed  Google Scholar 

  47. Rucker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119(9):2114–21.

    Article  CAS  PubMed  Google Scholar 

  48. Andersen MK, Christiansen DH, Pedersen-Bjergaard J. Centromeric breakage and highly rearranged chromosome derivatives associated with mutations of TP53 are common in therapy-related MDS and AML after therapy with alkylating agents: an M-FISH study. Genes Chromosomes Cancer. 2005;42(4):358–71.

    Article  CAS  PubMed  Google Scholar 

  49. Sallman DA, DeZem AE, Steensma DP, Sweet KL, Cluzeau T, Sekeres MA, Garcia-Manero G, Roboz GJ, McLemore AF, McGraw KL, Puskas J, Zhang L, Bhagat CK, Yao J, Al Ali N, Padron E, Tell R, Lancet JE, Fenaux P, List AF, Komrokji RS. Phase 1b/2 combination study of APR-246 and Azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). ASH Abstract #3091. 2018.

  50. DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DiNardo CD, Stein EM, de Botton S, et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med. 2018;378(25):2386–98.

    Article  CAS  PubMed  Google Scholar 

  54. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16(7):413–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee SC, Dvinge H, Kim E, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22(6):672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seiler M, Yoshimi A, Darman R, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24(4):497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brunelle JK, Letai A. Control of mitochondrial apoptosis by the BCL-2 family. J Cell Sci. 2009;122(Pt 4):437–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pullarkat VA, Newman EM. BCL2 inhibition by venetoclax: targeting the achilles’ heel of the acute myeloid leukemia stem cell? Cancer Discov. 2016;6(10):1082–3.

    Article  CAS  PubMed  Google Scholar 

  59. Konopleva M, Contractor R, Tsao T, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–88.

    Article  CAS  PubMed  Google Scholar 

  60. Vo TT, Ryan J, Carrasco R, et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell. 2012;151(2):344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–75.

    Article  CAS  PubMed  Google Scholar 

  62. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chyla B, Daver N, Doyle K, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia. Am J Hematol. 2018;93:E202.

    Article  PubMed Central  Google Scholar 

  64. Tsao T, Shi Y, Kornblau S, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91(12):1861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bogenberger JM, Delman D, Hansen N, et al. Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma. 2015;56(1):226–9.

    Article  PubMed  Google Scholar 

  66. DiNardo CD, Pratz KW, Letai A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19(2):216–28.

    Article  CAS  PubMed  Google Scholar 

  67. Dinardo CD, Pratz KW, Potluri J, Pullarkat VA, Jonas BA, Wei AH, Becker PS, Frankfurt O, Xu T, Hong W-J, Chyla B, Pollyea DA, Letai AG. Durable response with venetoclax in combination with decitabine or azacitadine in elderly patients with acute myeloid leukemia (AML). ASCO Abstract 7010. 2018.

  68. Wei AH, Strickland SA Jr, Hou JZ, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37(15):1277–84.

    Article  CAS  PubMed  Google Scholar 

  69. Lin KH, Winter PS, Xie A, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep. 2016;6:27696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lyle L, Daver N. Current and emerging therapies for patients with acute myeloid leukemia: a focus on MCL-1 and the CDK9 pathway. Am J Manag Care. 2018;24(16 Suppl):S356–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naval Daver.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflict of interest

Naval Daver has received research funding from: Pfizer, BMS, Novartis, Daiichi-Sankyo, Karyopharm, Incyte, Abbvie, Servier, Genentech, Nohla, Glymomimeticsm Immunogen; Advisory/Consulting: Prizer, Novartis, BMS, Otsuka, Celgene, Incyte, Jazz, Karyopharm, Sunesis, Immunogen, Abbvie, Astellas, Daiichi-Sankyo, Agio; Honoraria: BMS, Jazz, Novartis, Incyte, Otsuka, Immunogen, Pfizer, Astellas, Abbvie. Musa Yilmaz declares no conflicts of interest that might be relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, M., Daver, N. From DNA Sequencing to Clinical Trials: Finding New Targeted Drugs for Acute Myeloid Leukemia. Drugs 79, 1177–1186 (2019). https://doi.org/10.1007/s40265-019-01144-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01144-7

Navigation