Skip to main content
Log in

Auto-Generated Physiological Chain Data for an Ontological Framework for Pharmacology and Mechanism of Action to Determine Suspected Drugs in Cases of Dysuria

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

Patients often take several different medications for multiple conditions concurrently. Therefore, when adverse drug events (ADEs) occur, it is necessary to consider the mechanisms responsible. Few approaches consider the mechanisms of ADEs, such as changes in physiological states. We proposed that the ontological framework for pharmacology and mechanism of action (pharmacodynamics) we developed could be used for this approach. However, the existing knowledge base contains little data on physiological chains (PCs).

Objective

We aimed to investigate a method for automatically generating missing PC from the viewpoint of anatomical structures. This study was conducted to determine dysuria-related adverse events more likely to occur during multidrug administration.

Methods

We adopted a systematic approach to determine drugs suspected to cause adverse events and incorporated existing data and data generated in our newly developed method into our ontological framework. The performance of automated data generation was evaluated using this newly developed system. Suspected drugs determined by the system were compared with those derived from adverse events databases.

Results

Of the 242 drugs involving suspected drug-induced urinary retention or dysuria, 26 suspected drugs were determined. Of these, five were drugs with side effects not listed in drug package inserts. The system derived potential mechanisms of action, PCs, and suspected drugs.

Conclusion

Our method is novel in that it generates PC data from anatomical structural properties and could serve as a knowledge base for determining suspected drugs by potential mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arai H, Akishita M, Teramoto S, Mizukami K, Morimoto S, Toba K. Incidence of adverse drug reactions in geriatric units of university hospitals. Geriatr Gerontol Int. 2005;5:293–7.

    Article  CAS  Google Scholar 

  2. Akishita M, Arai H, Arai H, Inamatsu T, Kuzuya M, Suzuki Y, et al. Survey on geriatricians’ experiences of adverse drug reactions caused by potentially inappropriate medications: Commission report of the Japan Geriatrics Society. Geriatr Gerontol Int. 2011;11:3–7.

    Article  PubMed  Google Scholar 

  3. Oosterhuis I, Zweers P, Rümke H, Muller-Hansma A, van Puijenbroek EP. A tailor-made approach for causality assessment for ADR reports on drugs and vaccines. Pharmacoepidemiol Drug Saf. 2018;38:1–7.

    Google Scholar 

  4. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science (80-). 2008;321:263–6.

    Article  CAS  Google Scholar 

  5. Garcia-Serna R, Mestres J. Anticipating drug side effects by comparative pharmacology. Expert Opin Drug Metab Toxicol. 2010;6:1253–63.

    Article  CAS  PubMed  Google Scholar 

  6. Chen B, Dong X, Jiao D, Wang H, Zhu Q, Ding Y, et al. Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinform. 2010;11:255.

    Article  CAS  Google Scholar 

  7. Sarntivijai S, Zhang S, Jagannathan DG, Zaman S, Burkhart KK, Omenn GS, et al. Linking MedDRA-coded clinical phenotypes to biological mechanisms by the ontology of adverse events : a pilot study on tyrosine kinase inhibitors. Drug Saf. 2016;39:697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berger SI, Iyengar R. Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip Rev Syst Biol Med. 2011;3:129–35.

    Article  CAS  PubMed  Google Scholar 

  9. Duran-Frigola M, Aloy P. Analysis of chemical and biological features yields mechanistic insights into drug side effects. Chem Biol. 2013;20:594–603.

    Article  CAS  PubMed  Google Scholar 

  10. Sider 2 [Internet]. 2015. http://sideeffects.embl.de/. Accessed 13 Mar 2015.

  11. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6:343.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Canadian Institutes of Health Research. DrugBank [Internet]. 2015. http://www.drugbank.ca/. Accessed 8 Dec 2018.

  13. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6.

    Article  CAS  PubMed  Google Scholar 

  14. Stanford University. PharmGKB [Internet]. 2015. http://www.pharmgkb.org/. Accessed 13 Mar 2015.

  15. McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE. From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med. 2011;5:795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. U.S. Department of Veterans Affair. National Drug File Reference Terminology (NDF-RT) [Internet]. http://www.va.gov/. Accessed 13 Mar 2015.

  17. Lincoln MJ, Brown SH, Nguyen V, Cromwell T, Carter J, Erlbaum M, et al. US Department of veterans affairs enterprise reference terminology strategic overview. Stud Health Technol Inform. 2004;107:391–5.

    PubMed  Google Scholar 

  18. Hayakawa M, Imai T, Ohe K. Investigation of descriptions in open drug information databases toward adverse events reasoning system. Jpn J Med Inform. 2013;33(Suppl.):898–901.

    Google Scholar 

  19. Zhichkin PE, Athey BD, Avigan MI, Abernethy DR. Needs for an expanded ontology-based classification of adverse drug reactions and related mechanisms. Clin. Pharmacol. Ther. 2012;91:963–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gene Ontology Consortium. Gene Ontology [Internet]. 1999. http://geneontology.org/. Accessed 8 Dec 2018.

  21. Foundational Model of Anatomy (FMA) [Internet]. 2019. http://si.washington.edu/projects/fma. Accessed 18 May 2019.

  22. Imai T, Kou H, Zhou J, Kozaki K, Mizoguchi R, Ohe K. Japan Medical Ontology Development Project for Advanced Clinical. In: System Proceedings of 10th international HL7 interoperability conference 2009; 2009. p. 42–6.

  23. Kozaki K, Yamagata Y, Mizoguchi R, Imai T, Ohe K. Disease compass—a navigation system for disease knowledge based on ontology and linked data techniques. J Biomed Semant. 2017;8:1–18.

    Article  Google Scholar 

  24. Imai T, Ohe K, Shinohara E, Kajino M, Sakurai R, Kozaki K, et al. An ontological framework for representing topological information in human anatomy. In: Proc international conference on biomedical ontology BioCreative (ICBO-BioCreative 2016), Corvallis, USA, August 1–4, 2016 CEUR Work Proceedings, vol. 1747; 2016. p. 3–8. http://ceur-ws.org/Vol-1747/IT506_ICBO2016.pdf. Accessed 8 Dec 2018.

  25. Mizoguchi R. YAMATO: Yet Another More Advanced Top-level Ontology [Internet]. 2016. http://www.ei.sanken.osaka-u.ac.jp/hozo/onto_library/upperOnto.htm. ​Accessed 18 May 2019.

  26. Borgo S, Mizoguchi R. A first-order formalization of event, object, process and role in YAMATO. Front Artif Intell Appl. 2014;267:79–92.

    Google Scholar 

  27. Mizoguchi R. YAMATO: Yet Another More Advanced Top-level Ontology. In: Proceedings of sixth Australas ontology work Adelaide, Aust 7 December 2010; 2010. p. 1–16. https://pdfs.semanticscholar.org/7117/fa4b0fdaa737a90343ce8d4fcc890c57ea27.pdf. Accessed 8 Dec 2018.

  28. Mizoguchi R, Toyoshima F. YAMATO : Yet Another More Advanced Top-level Ontology with Analysis of Five Examples of Change. In: Proceedings of the jointt ontological work 2017, Bozen-Bolzano, Italy, Sept 2017, vol. 2050. p. 21–23. http://ceur-ws.org/Vol-2050/FOUST_paper_4.pdf. Accessed 8 Dec 2018.

  29. Kozaki K, Kitamura Y, Ikeda M, Mizoguchi R. Hozo: An environment for building/using ontologies based on a fundamental consideration of “role” and “relationship.” Knowl Eng Knowl Manag Ontol Semant Web. 2002;213–8. https://link.springer.com/chapter/10.1007/3-540-45810-7_21. Accessed 8 Dec 2018.

  30. Mizoguchi R, Sunagawa E, Kozaki K, Kitamura Y. The model of roles within an ontology development tool: Hozo. Appl Ontol. 2007;2(2):159–79. https://content.iospress.com/articles/applied-ontology/ao038. Accessed 8 Dec 2018.

  31. Kozaki K, Sunagawa E, Kitamura Y, Mizoguchi R. Role Representation model using OWL and SWRL. In: Proceedings of 2nd workshop on roles and relationships in object oriented programming, multiagent systems, and ontologies, Berlin, 30–31 July, p. 39–46, 2007. http://www.ei.sanken.osaka-u.ac.jp/pub/kozaki/Role07kozaki.pdf. Accessed 8 Dec 2018.

  32. Yamagata Y, Kozaki K, Imai T, Ohe K, Mizoguchi R. An ontological modeling approach for abnormal states and its application in the medical domain. J Biomed Semant. 2014;5:23.

    Article  Google Scholar 

  33. Imai T, Hayakawa M, Ohe K. Development of description framework of pharmacodynamics ontology and its application to possible drug-drug interaction reasoning. Stud Health Technol Inf. 2013;192:567–71.

    Google Scholar 

  34. Brunton LL, Chabner BA. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill Prof. McGraw-Hill Professional; 2011. p. 178–80.

    Google Scholar 

  35. Tanaka C, Kato R. NEW pharmacology revised 6th edition. Nancodo: Tokyo; 2011. p. 234.

    Google Scholar 

  36. Fukuda K. Standard physiology revised 8th edition. Tokyo: Igaku-shoin; 2014.

    Google Scholar 

  37. The ICH MedDRA Management Committee Maintenance and Support Services Organization. MedDRA [Internet]. http://www.meddra.org/. Accessed 18 May 2019.

  38. Brown EG. Using MedDRA implications for risk management. Drug Saf. 2004;27:591–602.

    Article  PubMed  Google Scholar 

  39. Japan Pharmaceuticals and Medical Devices Agency of. Safety Alerts and Recalls/Review Reports/Package Inserts, etc [Internet]. 2013. http://www.pmda.go.jp. ​Accessed 20 May 2013.

  40. Zaman S, Sarntivijai S, Abernethy DR. Use of biomedical ontologies for integration of biological knowledge for learning and prediction of adverse drug reactions. Gene Regul Syst Biol. 2017;11:1177625017696075.

    Google Scholar 

  41. Therapeutic target database [Internet]. 2018. http://bidd.nus.edu.sg/group/cjttd/. ​Accessed 18 May 2019.

  42. Yang H, Qin C, Li YH, Tao L, Zhou J, Yu CY, et al. Therapeutic target database update 2016: Enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2016;44:D1069–74.

    Article  CAS  PubMed  Google Scholar 

  43. STITCH Consortium. STITCH [Internet]. 2016. http://stitch.embl.de/. ​Accessed 18 May 2019.

  44. Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, Von Mering C, Jensen LJ, et al. STITCH 4: Integration of protein-chemical interactions with user data. Nucleic Acids Res. 2014;42:401–7.

    Article  CAS  Google Scholar 

  45. European Molecular Biology Laboratory. ChEMBL [Internet]. 2018. https://www.ebi.ac.uk/chembl/. ​Accessed 18 May 2019.

  46. Gaulton A, Hersey A, Nowotka ML, Patricia Bento A, Chambers J, Mendez D, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45:D945–54.

    Article  CAS  PubMed  Google Scholar 

  47. EMBL-EBI. ChEBI [Internet]. 2018. http://www.ebi.ac.uk/chebi/. ​Accessed 18 May 2019.

  48. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008;36:D344–50.

    Article  CAS  PubMed  Google Scholar 

  49. Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012;486:361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Avillach P, Coloma PM, Gini R, Schuemie M, Mougin F, Dufour J-C, et al. Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU-ADR project. J Am Med Inf Assoc. 2013;20:184–92.

    Article  Google Scholar 

  51. Xu R, Wang Q. Automatic signal extraction, prioritizing and filtering approaches in detecting post-marketing cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS). J Biomed Inform. 2014;47:171–7.

    Article  PubMed  Google Scholar 

  52. Liu Z, Fang H, Reagan K, Xu X, Mendrick DL, Slikker W, et al. In silico drug repositioning: what we need to know. Drug Discov Today. 2013;18:110–5.

    Article  CAS  PubMed  Google Scholar 

  53. Jung K, LePendu P, Chen WS, Iyer SV, Readhead B, Dudley JT, et al. Automated detection of off-label drug use. PLoS One. 2014;9:e89324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M. Drug-target network. Nat Biotechnol. 2007;25:1119–26.

    Article  CAS  PubMed  Google Scholar 

  55. Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther. 2010;125:230–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayo Hayakawa.

Ethics declarations

Research involving human participants and/or animals

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Masayo Hayakawa, Takeshi Imai, Yoshimasa Kawazoe, Kouji Kozaki, and Kazuhiko Ohe have no conflicts of interest that are directly relevant to the content of this study.

Funding

This work was partially supported by Health, Labour and Welfare Sciences Research Grants number H28-IRYO-SHITEI-020, Japan, and JSPS KAKENHI Grant number JP26460857.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, M., Imai, T., Kawazoe, Y. et al. Auto-Generated Physiological Chain Data for an Ontological Framework for Pharmacology and Mechanism of Action to Determine Suspected Drugs in Cases of Dysuria. Drug Saf 42, 1055–1069 (2019). https://doi.org/10.1007/s40264-019-00833-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-019-00833-2

Navigation