Skip to main content
Log in

Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most prevalent and devastating neurological disorders characterized by episodes of unusual sensations, loss of awareness, and reoccurring seizures. The frequency and intensity of epileptic fits can vary to a great degree, with almost a third of all cases resistant to available therapies. At present, there is a major unmet need for effective and specific therapeutic intervention. Impairments of the exquisite balance between excitatory and inhibitory synaptic processes in the brain are considered key in the onset and pathophysiology of the disease. As the primary excitatory neurotransmitter in the central nervous system, glutamate has been implicated in the process, with the glutamatergic system holding center stage in the pathobiology as well as in developing disease-modifying therapies. Emerging data pinpoint impairments of glutamate clearance as one of the key causative factors in drug-resistant disease forms. Reinstatement of glutamate homeostasis using pharmacological and genetic modulation of glutamate clearance is therefore considered to be of major translational relevance. In this article, we review the neurobiological and clinical evidence suggesting complex aberrations in the activity and functions of excitatory amino acid transporters (EAATs) in epilepsy, with knock-on effects on glutamate homeostasis as a leading cause for the development of refractory forms. We consider the emerging data on pharmacological and genetic manipulations of EAATs, with reference to seizures and glutamate dyshomeostasis, and review their fundamental and translational relevance. We discuss the most recent advances in the EAATs research in human and animal models, along with numerous questions that remain open for debate and critical appraisal. Contrary to the widely held view on EAATs as a promising therapeutic target for management of refractory epilepsy as well as other neurological and psychiatric conditions related to glutamatergic hyperactivity and glutamate-induced cytotoxicity, we stress that the true relevance of EAAT2 as a target for medical intervention remains to be fully appreciated and verified. Despite decades of research, the emerging properties and functional characteristics of glutamate transporters and their relationship with neurophysiological and behavioral correlates of epilepsy challenge the current perception of this disease and fit unambiguously in neither EAATs functional deficit nor in reversal models. We stress the pressing need for new approaches and models for research and restoration of the physiological activity of glutamate transporters and synaptic transmission to achieve much needed therapeutic effects. The complex mechanism of EAATs regulation by multiple factors, including changes in the electrochemical environment and ionic gradients related to epileptic hyperactivity, impose major therapeutic challenges. As a final note, we consider the evolving views and present a cautious perspective on the key areas of future progress in the field towards better management and treatment of refractory disease forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meyer AC, Dua T, Ma J, Saxena S, Birbeck G. Global disparities in the epilepsy treatment gap: a systematic review. Bull World Health Organ. 2010;88(4):260–6. https://doi.org/10.2471/BLT.09.064147.

    Article  PubMed  Google Scholar 

  2. Moshe SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet. 2015;385(9971):884–98. https://doi.org/10.1016/S0140-6736(14)60456-6.

    Article  PubMed  Google Scholar 

  3. Loscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov. 2013;12(10):757–76. https://doi.org/10.1038/nrd4126.

    Article  CAS  PubMed  Google Scholar 

  4. Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol. 2017;8:301. https://doi.org/10.3389/fneur.2017.00301.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barker-Haliski M, White HS. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med. 2015;5(8):a022863. https://doi.org/10.1101/cshperspect.a022863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96. https://doi.org/10.1124/pr.109.002451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albrecht J, Zielinska M. Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy. Neurochem Res. 2017;42(6):1724–34. https://doi.org/10.1007/s11064-016-2105-8.

    Article  CAS  PubMed  Google Scholar 

  8. Eid T, Gruenbaum SE, Dhaher R, Lee TW, Zhou Y, Danbolt NC. The glutamate-glutamine cycle in epilepsy. Adv Neurobiol. 2016;13:351–400. https://doi.org/10.1007/978-3-319-45096-4_14.

    Article  PubMed  Google Scholar 

  9. Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opin Ther Targets. 2019;23(4):341–51. https://doi.org/10.1080/14728222.2019.1586885.

    Article  CAS  PubMed  Google Scholar 

  10. Bouvier M, Szatkowski M, Amato A, Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature. 1992;360(6403):471–4. https://doi.org/10.1038/360471a0.

    Article  CAS  PubMed  Google Scholar 

  11. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43(5):1369–74.

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann A, Isacsson H, Hamberger A. Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J Neurochem. 1983;40(5):1314–20.

    Article  CAS  PubMed  Google Scholar 

  13. During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 1993;341(8861):1607–10. https://doi.org/10.1016/0140-6736(93)90754-5.

    Article  CAS  PubMed  Google Scholar 

  14. Ovsepian SV, Blazquez-Llorca L, Freitag SV, Rodrigues EF, Herms J. Ambient glutamate promotes paroxysmal hyperactivity in cortical pyramidal neurons at amyloid plaques via presynaptic mGluR1 receptors. Cereb Cortex. 2017;27(10):4733–49. https://doi.org/10.1093/cercor/bhw267.

    Article  PubMed  Google Scholar 

  15. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol. 2005;57(2):226–35. https://doi.org/10.1002/ana.20380.

    Article  CAS  PubMed  Google Scholar 

  16. Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, et al. A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science. 2019;365(6453):559–65. https://doi.org/10.1126/science.aay0198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Millan MH, Chapman AG, Meldrum BS. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilepsy Res. 1993;14(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  18. Szyndler J, Maciejak P, Turzynska D, Sobolewska A, Lehner M, Taracha E, et al. Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats. Neurosci Lett. 2008;439(3):245–9. https://doi.org/10.1016/j.neulet.2008.05.002.

    Article  CAS  PubMed  Google Scholar 

  19. Pena F, Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience. 2000;101(3):547–61.

    Article  CAS  PubMed  Google Scholar 

  20. Kanamori K, Ross BD. Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Res. 2011;1371:180–91. https://doi.org/10.1016/j.brainres.2010.11.064.

    Article  CAS  PubMed  Google Scholar 

  21. Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin. Epilepsy Res. 2008;78(1):50–9. https://doi.org/10.1016/j.eplepsyres.2007.10.007.

    Article  CAS  PubMed  Google Scholar 

  22. Thomas P, Phillips J, Delanty N, O’Connor W. Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus. Epilepsy Res. 2003;54(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  23. Urbanska EM, Czuczwar SJ, Kleinrok Z, Turski WA. Excitatory amino acids in epilepsy. Restor Neurol Neurosci. 1998;13(1, 2):25–39.

    CAS  PubMed  Google Scholar 

  24. Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid plaques of Alzheimer's disease as hotspots of glutamatergic activity. Neuroscientist. 2019;25(4):288–97. https://doi.org/10.1177/1073858418791128.

    Article  CAS  PubMed  Google Scholar 

  25. Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology. 2019. https://doi.org/10.1016/j.neuropharm.2019.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tanaka K. Cloning and expression of a glutamate transporter from mouse brain. Neurosci Lett. 1993;159(1):183–6.

    Article  CAS  PubMed  Google Scholar 

  27. Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain l-glutamate transporter. Nature. 1992;360:464–7. https://doi.org/10.1038/360464a0.

    Article  CAS  PubMed  Google Scholar 

  28. Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992;360:467–71. https://doi.org/10.1038/360467a01992.

    Article  CAS  PubMed  Google Scholar 

  29. Fairman W, Vandenberg R, Arriza J, Kavanaught M, Amara S. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995;375:599–603. https://doi.org/10.1038/375599a01995.

    Article  CAS  PubMed  Google Scholar 

  30. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci. 1997;94(8):4155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci. 1995;15(3):1835–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karki P, Lee E, Aschner M. Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med. 2013;25(1):4. https://doi.org/10.1186/2052-4374-25-4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry. 2018;8(2):51–63. https://doi.org/10.5498/wjp.v8.i2.51.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmitt A, Asan E, Lesch KP, Kugler P. A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience. 2002;109(1):45–61.

    Article  CAS  PubMed  Google Scholar 

  35. Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, et al. The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci. 2004;24(5):1136–48. https://doi.org/10.1523/JNEUROSCI.1586-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13(3):713–25.

    Article  CAS  PubMed  Google Scholar 

  37. Bjorn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int. 2016;98:4–18. https://doi.org/10.1016/j.neuint.2016.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagao S, Kwak S, Kanazawa I. EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience. 1997;78(4):929–33.

    Article  CAS  PubMed  Google Scholar 

  39. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 2011;226(10):2484–93. https://doi.org/10.1002/jcp.22609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997;276(5319):1699–702.

    Article  CAS  PubMed  Google Scholar 

  41. Mookherjee P, Green PS, Watson G, Marques MA, Tanaka K, Meeker KD, et al. GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimer's Dis. 2011;26(3):447–55.

    Article  CAS  Google Scholar 

  42. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, et al. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci. 2012;32(17):6000–133. https://doi.org/10.1523/JNEUROSCI.5347-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.

    Article  CAS  PubMed  Google Scholar 

  44. Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8(12):935–47. https://doi.org/10.1038/nrn2274.

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Lozada Z, Guillem AM, Robinson MB. Transcriptional regulation of glutamate transporters: from extracellular signals to transcription factors. Adv Pharmacol. 2016;76:103–45. https://doi.org/10.1016/bs.apha.2016.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, et al. Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia. 2004;45(2):155–69. https://doi.org/10.1002/glia.10317.

    Article  PubMed  Google Scholar 

  47. Utsunomiya-Tate N, Endou H, Kanai Y. Tissue specific variants of glutamate transporter GLT-1. FEBS Lett. 1997;416(3):312–6.

    Article  CAS  PubMed  Google Scholar 

  48. Vallejo-Illarramendi A, Domercq M, Matute C. A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake. J Neurochem. 2005;95(2):341–8. https://doi.org/10.1111/j.1471-4159.2005.03370.x.

    Article  CAS  PubMed  Google Scholar 

  49. Jin XP, Peng JB, Huang F, Zhu YN, Fei J, Guo LH. A mRNA molecule encoding truncated excitatory amino acid carrier 1 (EAAC1) protein (EAAC2) is transcribed from an independent promoter but not an alternative splicing event. Cell Res. 2002;12(3–4):257–62. https://doi.org/10.1038/sj.cr.7290132.

    Article  PubMed  Google Scholar 

  50. Xu S, Han JC, Morales A, Menzie CM, Williams K, Fan YS. Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet Genome Res. 2008;122(2):181–7. https://doi.org/10.1159/000172086.

    Article  CAS  PubMed  Google Scholar 

  51. Epi KC, Epilepsy Phenome/Genome P, Allen AS, Berkovic SF, Cossette P, Delanty N, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21. https://doi.org/10.1038/nature12439.

    Article  CAS  Google Scholar 

  52. Epi KC. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet. 2016;99(2):287–98. https://doi.org/10.1016/j.ajhg.2016.06.003.

    Article  CAS  Google Scholar 

  53. Guella I, McKenzie MB, Evans DM, Buerki SE, Toyota EB, Van Allen MI, et al. De novo mutations in YWHAG cause early-onset epilepsy. Am J Hum Genet. 2017;101(2):300–10. https://doi.org/10.1016/j.ajhg.2017.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stergachis AB, Pujol-Gimenez J, Gyimesi G, Fuster D, Albano G, Troxler M, et al. Recurrent SLC1A2 variants cause epilepsy via a dominant negative mechanism. Ann Neurol. 2019;85(6):921–6. https://doi.org/10.1002/ana.25477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005;65(4):529–34. https://doi.org/10.1212/01.wnl.0000172638.58172.5a.

    Article  CAS  PubMed  Google Scholar 

  56. Poletti S, Riberto M, Vai B, Ghiglino D, Lorenzi C, Vitali A, et al. A glutamate transporter EAAT1 gene variant influences amygdala functional connectivity in bipolar disorder. J Mol Neurosci. 2018;65(4):536–45. https://doi.org/10.1007/s12031-018-1138-7.

    Article  CAS  PubMed  Google Scholar 

  57. Reyes N, Ginter C, Boudker O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature. 2009;462(7275):880–5. https://doi.org/10.1038/nature08616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kanai Y, Hediger MA. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol. 2003;479(1–3):237–47.

    Article  CAS  PubMed  Google Scholar 

  59. Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature. 1996;383(6601):634–7. https://doi.org/10.1038/383634a0.

    Article  CAS  PubMed  Google Scholar 

  60. Grewer C, Rauen T. Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol. 2005;203(1):1–20. https://doi.org/10.1007/s00232-004-0731-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vandenberg RJ, Ryan RM. Mechanisms of glutamate transport. Physiol Rev. 2013;93(4):1621–57. https://doi.org/10.1152/physrev.00007.2013.

    Article  CAS  PubMed  Google Scholar 

  62. Jabaudon D, Scanziani M, Gahwiler BH, Gerber U. Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci USA. 2000;97(10):5610–5. https://doi.org/10.1073/pnas.97.10.5610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Billups B, Attwell D. Modulation of non-vesicular glutamate release by pH. Nature. 1996;379(6561):171–4. https://doi.org/10.1038/379171a0.

    Article  CAS  PubMed  Google Scholar 

  64. Beck H, Elger CE. Epilepsy research: a window onto function to and dysfunction of the human brain. Dialogues Clin Neurosci. 2008;10(1):7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jones RS, da Silva AB, Whittaker RG, Woodhall GL, Cunningham MO. Human brain slices for epilepsy research: pitfalls, solutions and future challenges. J Neurosci Methods. 2016;260:221–32. https://doi.org/10.1016/j.jneumeth.2015.09.021.

    Article  PubMed  Google Scholar 

  66. Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC. Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience. 1999;88(4):1083–91.

    Article  CAS  PubMed  Google Scholar 

  67. Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet. 2004;363(9402):28–37.

    Article  CAS  PubMed  Google Scholar 

  68. Bjornsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC. Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis. 2007;25(2):319–30. https://doi.org/10.1016/j.nbd.2006.09.014.

    Article  CAS  PubMed  Google Scholar 

  69. Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology. 1999;52(3):453–72.

    Article  CAS  PubMed  Google Scholar 

  70. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain. 2002;125(Pt 1):32–433.

    Article  CAS  PubMed  Google Scholar 

  71. Hoogland G, van Oort RJ, Proper EA, Jansen GH, van Rijen PC, van Veelen CW, et al. Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients. Epilepsy Res. 2004;59(2–3):75–82. https://doi.org/10.1016/j.eplepsyres.2004.03.003.

    Article  CAS  PubMed  Google Scholar 

  72. Vasilev DS, Tumanova NL, Kim KK, Lavrentyeva VV, Lukomskaya NY, Zhuravin IA, et al. Transient morphological alterations in the hippocampus after pentylenetetrazole-induced seizures in rats. Neurochem Res. 2018. https://doi.org/10.1007/s11064-018-2583-y.

    Article  PubMed  Google Scholar 

  73. Zaitsev AV, Kim KK, Vasilev DS, Lukomskaya NY, Lavrentyeva VV, Tumanova NL, et al. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res. 2015;93(3):454–65. https://doi.org/10.1002/jnr.23500.

    Article  CAS  PubMed  Google Scholar 

  74. Chen S, Zeng X, Zong W, Wang X, Chen L, Zhou L, et al. Aucubin alleviates seizures activity in li-pilocarpine-induced epileptic mice: involvement of inhibition of neuroinflammation and regulation of neurotransmission. Neurochem Res. 2019;44(2):472–84. https://doi.org/10.1007/s11064-018-2700-y.

    Article  CAS  PubMed  Google Scholar 

  75. Zubareva OE, Kovalenko AA, Kalemenev SV, Schwarz AP, Karyakin VB, Zaitsev AV. Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats. Neurosci Lett. 2018;686:94–100. https://doi.org/10.1016/j.neulet.2018.08.047.

    Article  CAS  PubMed  Google Scholar 

  76. Sarfi M, Elahdadi Salmani M, Goudarzi I, Lashkar Boluki T, Abrari K. Evaluating the role of astrocytes on beta-estradiol effect on seizures of Pilocarpine epileptic model. Eur J Pharmacol. 2017;797:32–8. https://doi.org/10.1016/j.ejphar.2017.01.005.

    Article  CAS  PubMed  Google Scholar 

  77. Crino PB, Jin H, Shumate MD, Robinson MB, Coulter DA, Brooks-Kayal AR. Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia. 2002;43(3):211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hubbard JA, Szu JI, Yonan JM, Binder DK. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol. 2016;283(Pt A):85–96. https://doi.org/10.1016/j.expneurol.2016.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peterson AR, Binder DK. Regulation of synaptosomal GLT-1 and GLAST during epileptogenesis. Neuroscience. 2019;411:185–201. https://doi.org/10.1016/j.neuroscience.2019.05.048.

    Article  CAS  PubMed  Google Scholar 

  80. Nonaka M, Kohmura E, Yamashita T, Shimada S, Tanaka K, Yoshimine T, et al. Increased transcription of glutamate-aspartate transporter (GLAST/GluT-1) mRNA following kainic acid-induced limbic seizure. Brain Res Mol Brain Res. 1998;55(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  81. Samuelsson C, Kumlien E, Flink R, Lindholm D, Ronne-Engstrom E. Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy. Neurosci Lett. 2000;289(3):185–8.

    Article  CAS  PubMed  Google Scholar 

  82. Ueda Y, Doi T, Tokumaru J, Yokoyama H, Nakajima A, Mitsuyama Y, et al. Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid. J Neurochem. 2001;76(3):892–900.

    Article  CAS  PubMed  Google Scholar 

  83. Ingram EM, Wiseman JW, Tessler S, Emson PC. Reduction of glial glutamate transporters in the parietal cortex and hippocampus of the EL mouse. J Neurochem. 2001;79(3):564–75.

    Article  CAS  PubMed  Google Scholar 

  84. Yu YH, Xie W, Zhao YY. Effects of heterotherapy for homopathy on the metabolism path of glutamate in the pentylenetetrazol-kindled seizure rats' hippocampus. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013;33(1):95–9.

    PubMed  Google Scholar 

  85. Ghijsen WE, da Silva Aresta Belo AI, Zuiderwijk M, da Silva FHL. Compensatory change in EAAC1 glutamate transporter in rat hippocampus CA1 region during kindling epileptogenesis. Neurosci Lett. 1999;276(3):157–60.

    Article  CAS  PubMed  Google Scholar 

  86. Takahashi DK, Vargas JR, Wilcox KS. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis. 2010;40(3):573–85. https://doi.org/10.1016/j.nbd.2010.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhuravleva ZN, Zhuravlev GI, Samokhina EI. Changes in interactions between astrocytic processes and synaptic endings during the generation of epileptiform activity. Russ J Physiol. 2019;105(6):707–15. https://doi.org/10.1134/S0869813919060116.

    Article  Google Scholar 

  88. Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia. 2010;58(5):572–87. https://doi.org/10.1002/glia.20946.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci. 1999;19(16):6897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Witcher MR, Kirov SA, Harris KM. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia. 2007;55(1):13–23. https://doi.org/10.1002/glia.20415.

    Article  PubMed  Google Scholar 

  91. Bernardinelli Y, Muller D, Nikonenko I. Astrocyte-synapse structural plasticity. Neural Plast. 2014;2014:232105. https://doi.org/10.1155/2014/232105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Plata A, Lebedeva A, Denisov P, Nosova O, Postnikova TY, Pimashkin A, et al. Astrocytic atrophy following status epilepticus parallels reduced Ca(2+) activity and impaired synaptic plasticity in the rat hippocampus. Front Mol Neurosci. 2018;11:215. https://doi.org/10.3389/fnmol.2018.00215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Clarkson C, Smeal RM, Hasenoehrl MG, White JA, Rubio ME, Wilcox KS. Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol. 2020;326:113196. https://doi.org/10.1016/j.expneurol.2020.113196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, et al. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci. 2015;35(13):5187–201. https://doi.org/10.1523/JNEUROSCI.4255-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL. Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis. 2012;47(2):145–54. https://doi.org/10.1016/j.nbd.2012.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peghini P, Janzen J, Stoffel W. Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J. 1997;16(13):3822–32. https://doi.org/10.1093/emboj/16.13.3822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sepkuty JP, Cohen AS, Eccles C, Rafiq A, Behar K, Ganel R, et al. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J Neurosci. 2002;22(15):6372–9. https://doi.org/10.1523/JNEUROSCI.22-15-06372.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, et al. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci. 1998;10(3):976–88.

    Article  CAS  PubMed  Google Scholar 

  99. Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka K. Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res. 1999;845(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  100. Nagatomo K, Ueda Y, Doi T, Takaki M, Tsuru N. Functional role of GABA transporters for kindling development in GLAST KO mice. Neurosci Res. 2007;57(2):319–21. https://doi.org/10.1016/j.neures.2006.10.009.

    Article  CAS  PubMed  Google Scholar 

  101. Tsuru N, Ueda Y, Doi T. Amygdaloid kindling in glutamate transporter (GLAST) knockout mice. Epilepsia. 2002;43(8):805–11.

    Article  CAS  PubMed  Google Scholar 

  102. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7. https://doi.org/10.1038/nature03180.

    Article  CAS  PubMed  Google Scholar 

  103. Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M. Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia. 2012;60(7):1024–36. https://doi.org/10.1002/glia.22329.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, et al. Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem. 2008;283(19):13116–23. https://doi.org/10.1074/jbc.M707697200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zaitsev AV, Malkin SL, Postnikova TY, Smolensky IV, Zubareva OE, Romanova IV, et al. Ceftriaxone treatment affects EAAT2 expression and glutamatergic neurotransmission and exerts a weak anticonvulsant effect in young rats. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20235852.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Uyanikgil Y, Ozkeskek K, Cavusoglu T, Solmaz V, Tumer MK, Erbas O. Positive effects of ceftriaxone on pentylenetetrazol-induced convulsion model in rats. Int J Neurosci. 2016;126(1):70–5. https://doi.org/10.3109/00207454.2014.991821.

    Article  CAS  PubMed  Google Scholar 

  107. Hussein AM, Ghalwash M, Magdy K, Abulseoud OA. Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. J Epilepsy Res. 2016;6(1):8–15. https://doi.org/10.14581/jer.16002.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jelenkovic AV, Jovanovic MD, Stanimirovic DD, Bokonjic DD, Ocic GG, Boskovic BS. Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med (Maywood). 2008;233(11):1389–94. https://doi.org/10.3181/0803-RM-83.

    Article  CAS  Google Scholar 

  109. Soni N, Koushal P, Reddy BV, Deshmukh R, Kumar P. Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epilepsy Behav. 2015;48:4–14. https://doi.org/10.1016/j.yebeh.2015.04.056.

    Article  PubMed  Google Scholar 

  110. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30(16):1434–41. https://doi.org/10.1089/neu.2012.2712.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hameed MQ, Hsieh TH, Morales-Quezada L, Lee HHC, Damar U, MacMullin PC, et al. Ceftriaxone treatment preserves cortical inhibitory interneuron function via transient salvage of GLT-1 in a rat traumatic brain injury model. Cereb Cortex. 2018. https://doi.org/10.1093/cercor/bhy328.

    Article  PubMed Central  Google Scholar 

  112. Lai PC, Huang YT, Wu CC, Lai CJ, Wang PJ, Chiu TH. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats. J Biomed Sci. 2011;18:69. https://doi.org/10.1186/1423-0127-18-69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thone-Reineke C, Neumann C, Namsolleck P, Schmerbach K, Krikov M, Schefe JH, et al. The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens. 2008;26(12):2426–35. https://doi.org/10.1097/HJH.0b013e328313e403.

    Article  CAS  PubMed  Google Scholar 

  114. Hu YY, Xu J, Zhang M, Wang D, Li L, Li WB. Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats. J Neurochem. 2015;132(2):194–205. https://doi.org/10.1111/jnc.12958.

    Article  CAS  PubMed  Google Scholar 

  115. Krzyzanowska W, Pomierny B, Budziszewska B, Filip M, Pera J. N-Acetylcysteine and ceftriaxone as preconditioning strategies in focal brain ischemia: influence on glutamate transporters expression. Neurotox Res. 2016;29(4):539–50. https://doi.org/10.1007/s12640-016-9602-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Loewen JL, Albertini G, Dahle EJ, Sato H, Smolders IJ, Massie A, et al. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp Neurol. 2019;318:50–60. https://doi.org/10.1016/j.expneurol.2019.04.010.

    Article  CAS  PubMed  Google Scholar 

  117. Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, et al. Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol. 2000;57(4):667–78. https://doi.org/10.1124/mol.57.4.667.

    Article  CAS  PubMed  Google Scholar 

  118. Tian G, Lai L, Guo H, Lin Y, Butchbach ME, Chang Y, et al. Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem. 2007;282(3):1727–37. https://doi.org/10.1074/jbc.M609822200.

    Article  CAS  PubMed  Google Scholar 

  119. Wen ZH, Wu GJ, Chang YC, Wang JJ, Wong CS. Dexamethasone modulates the development of morphine tolerance and expression of glutamate transporters in rats. Neuroscience. 2005;133(3):807–17. https://doi.org/10.1016/j.neuroscience.2005.03.015.

    Article  CAS  PubMed  Google Scholar 

  120. Karki P, Smith K, Johnson J Jr, Lee E. Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-alpha in estrogen-induced upregulation of glutamate transporters in astrocytes. Mol Cell Endocrinol. 2014;389(1–2):58–64. https://doi.org/10.1016/j.mce.2014.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fang Q, Hu WW, Wang XF, Yang Y, Lou GD, Jin MM, et al. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology. 2014;77:156–66. https://doi.org/10.1016/j.neuropharm.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  122. Ganel R, Ho T, Maragakis NJ, Jackson M, Steiner JP, Rothstein JD. Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol Dis. 2006;21(3):556–67. https://doi.org/10.1016/j.nbd.2005.08.014.

    Article  CAS  PubMed  Google Scholar 

  123. Rao PS, Goodwani S, Bell RL, Wei Y, Boddu SH, Sari Y. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats. Neuroscience. 2015;295:164–74. https://doi.org/10.1016/j.neuroscience.2015.03.038.

    Article  CAS  PubMed  Google Scholar 

  124. Hassel B, Iversen EG, Gjerstad L, Tauboll E. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate. J Neurochem. 2001;77(5):1285–92. https://doi.org/10.1046/j.1471-4159.2001.00349.x.

    Article  CAS  PubMed  Google Scholar 

  125. Mao QX, Yang TD. Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats. Brain Res Bull. 2010;81(4–5):424–7. https://doi.org/10.1016/j.brainresbull.2009.09.006.

    Article  CAS  PubMed  Google Scholar 

  126. Fontana AC, de Oliveira Beleboni R, Wojewodzic MW, Ferreira Dos Santos W, Coutinho-Netto J, Grutle NJ, et al. Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol. 2007;72(5):1228–377. https://doi.org/10.1124/mol.107.037127.

    Article  CAS  PubMed  Google Scholar 

  127. Mortensen OV, Liberato JL, Coutinho-Netto J, Dos Santos WF, Fontana AC. Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains. J Neurochem. 2015;133(2):199–21010. https://doi.org/10.1111/jnc.13047.

    Article  CAS  PubMed  Google Scholar 

  128. Danbolt NC, Storm-Mathisen J, Kanner BI. An [Na+ + K+] coupled l-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience. 1992;51(2):295–310. https://doi.org/10.1016/0306-4522(92)90316-t.

    Article  CAS  PubMed  Google Scholar 

  129. Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 2008;578(2–3):171–6. https://doi.org/10.1016/j.ejphar.2007.10.023.

    Article  CAS  PubMed  Google Scholar 

  130. Kong Q, Chang LC, Takahashi K, Liu Q, Schulte DA, Lai L, et al. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest. 2014;124(3):1255–67. https://doi.org/10.1172/JCI66163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Eadie MJ. The evolution of J. Hughlings Jackson's thought on epilepsy. Clin Exp Neurol. 1990;27:29–41.

    CAS  PubMed  Google Scholar 

  132. York GK 3rd, Steinberg DA. Hughlings Jackson's neurological ideas. Brain. 2011;134(Pt 10):3106–13. https://doi.org/10.1093/brain/awr219.

    Article  PubMed  Google Scholar 

  133. Ovsepian SV, Dolly JO. Dendritic SNAREs add a new twist to the old neuron theory. Proc Natl Acad Sci USA. 2011;108(48):19113–20. https://doi.org/10.1073/pnas.1017235108.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jiang J, Amara SG. New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology. 2011;60(1):172–81. https://doi.org/10.1016/j.neuropharm.2010.07.019.

    Article  CAS  PubMed  Google Scholar 

  135. Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature. 2017;544(7651):446–51. https://doi.org/10.1038/nature22064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kiryk A, Aida T, Tanaka K, Banerjee P, Wilczynski GM, Meyza K, et al. Behavioral characterization of GLT1 (+/−) mice as a model of mild glutamatergic hyperfunction. Neurotox Res. 2008;13(1):19–30. https://doi.org/10.1007/BF03033364.

    Article  CAS  PubMed  Google Scholar 

  137. Nothmann D, Leinenweber A, Torres-Salazar D, Kovermann P, Hotzy J, Gameiro A, et al. Hetero-oligomerization of neuronal glutamate transporters. J Biol Chem. 2011;286(5):3935–43. https://doi.org/10.1074/jbc.M110.187492.

    Article  CAS  PubMed  Google Scholar 

  138. Lehre KP, Danbolt NC. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci. 1998;18(21):8751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A, et al. Distribution of glutamate transporter subtypes during human brain development. J Neurochem. 1997;69(6):2571–80. https://doi.org/10.1046/j.1471-4159.1997.69062571.x.

    Article  CAS  PubMed  Google Scholar 

  140. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, et al. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience. 2008;157(1):80–94. https://doi.org/10.1016/j.neuroscience.2008.08.043.

    Article  CAS  PubMed  Google Scholar 

  141. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;18(10):3606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pow DV, Barnett NL. Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett. 2000;280(1):21–4. https://doi.org/10.1016/s0304-3940(99)00988-x.

    Article  CAS  PubMed  Google Scholar 

  143. Rao PS, Bell RL, Engleman EA, Sari Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci. 2015;9:144. https://doi.org/10.3389/fnins.2015.00144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li LB, Toan SV, Zelenaia O, Watson DJ, Wolfe JH, Rothstein JD, et al. Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. J Neurochem. 2006;97(3):759–71. https://doi.org/10.1111/j.1471-4159.2006.03743.x.

    Article  CAS  PubMed  Google Scholar 

  145. Zschocke J, Bayatti N, Clement AM, Witan H, Figiel M, Engele J, et al. Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem. 2005;280(41):34924–32. https://doi.org/10.1074/jbc.M502581200.

    Article  CAS  PubMed  Google Scholar 

  146. Chang KH, Yeh CM, Yeh CY, Huang CC, Hsu KS. Neonatal dexamethasone treatment exacerbates hypoxic-ischemic brain injury. Mol Brain. 2013;6:18. https://doi.org/10.1186/1756-6606-6-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pawlak J, Brito V, Kuppers E, Beyer C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res. 2005;138(1):1–7. https://doi.org/10.1016/j.molbrainres.2004.10.043.

    Article  CAS  PubMed  Google Scholar 

  148. Johnson J Jr, Pajarillo EAB, Taka E, Reams R, Son DS, Aschner M, et al. Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology. 2018;64:230–9. https://doi.org/10.1016/j.neuro.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

  149. Yoshizumi M, Eisenach JC, Hayashida K. Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury. J Pain. 2013;14(11):1485–91. https://doi.org/10.1016/j.jpain.2013.07.007.

    Article  CAS  PubMed  Google Scholar 

  150. Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, et al. Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacology. 2010;35(3):792–805. https://doi.org/10.1038/npp.2009.188.

    Article  CAS  PubMed  Google Scholar 

  151. Ueda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res. 2000;133(3):334–9. https://doi.org/10.1007/s002210000443.

    Article  CAS  PubMed  Google Scholar 

  152. Tai YH, Wang YH, Wang JJ, Tao PL, Tung CS, Wong CS. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain. 2006;124(1–2):77–86. https://doi.org/10.1016/j.pain.2006.03.018.

    Article  CAS  PubMed  Google Scholar 

  153. Tai YH, Wang YH, Tsai RY, Wang JJ, Tao PL, Liu TM, et al. Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats. Pain. 2007;129(3):343–54. https://doi.org/10.1016/j.pain.2007.01.031.

    Article  CAS  PubMed  Google Scholar 

  154. Urbani A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci. 2000;12(10):3567–74. https://doi.org/10.1046/j.1460-9568.2000.00242.x.

    Article  CAS  PubMed  Google Scholar 

  155. Zona C, Siniscalchi A, Mercuri NB, Bernardi G. Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience. 1998;85(3):931–8. https://doi.org/10.1016/s0306-4522(97)00604-0.

    Article  CAS  PubMed  Google Scholar 

  156. Noh KM, Hwang JY, Shin HC, Koh JY. A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis. 2000;7(4):375–83. https://doi.org/10.1006/nbdi.2000.0297.

    Article  CAS  PubMed  Google Scholar 

  157. Dunlop J, Beal McIlvain H, She Y, Howland DS. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci. 2003;23(5):1688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Moretto MB, Arteni NS, Lavinsky D, Netto CA, Rocha JB, Souza DO, et al. Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: prevention by guanosine. Exp Neurol. 2005;195(2):400–6. https://doi.org/10.1016/j.expneurol.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  159. Frizzo ME, Lara DR, Prokopiuk Ade S, Vargas CR, Salbego CG, Wajner M, et al. Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol. 2002;22(3):353–63. https://doi.org/10.1023/a:1020728203682.

    Article  CAS  PubMed  Google Scholar 

  160. Nishida A, Iwata H, Kudo Y, Kobayashi T, Matsuoka Y, Kanai Y, et al. Nicergoline enhances glutamate uptake via glutamate transporters in rat cortical synaptosomes. Biol Pharm Bull. 2004;27(6):817–20. https://doi.org/10.1248/bpb.27.817.

    Article  CAS  PubMed  Google Scholar 

  161. Shimada F, Shiga Y, Morikawa M, Kawazura H, Morikawa O, Matsuoka T, et al. The neuroprotective agent MS-153 stimulates glutamate uptake. Eur J Pharmacol. 1999;386(2–3):263–70. https://doi.org/10.1016/s0014-2999(99)00735-9.

    Article  CAS  PubMed  Google Scholar 

  162. Uenishi H, Huang CS, Song JH, Marszalec W, Narahashi T. Ion channel modulation as the basis for neuroprotective action of MS-153. Ann N Y Acad Sci. 1999;890:385–99. https://doi.org/10.1111/j.1749-6632.1999.tb08018.x.

    Article  CAS  PubMed  Google Scholar 

  163. Fontana AC, Guizzo R, de Oliveira BR, Meirelles ESAR, Coimbra NC, Amara SG, et al. Purification of a neuroprotective component of Parawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol. 2003;139(7):1297–309. https://doi.org/10.1038/sj.bjp.0705352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Falcucci RM, Wertz R, Green JL, Meucci O, Salvino J, Fontana ACK. Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro excitotoxic model. ACS Chem Neurosci. 2019;10(8):3437–53. https://doi.org/10.1021/acschemneuro.9b00061.

    Article  CAS  PubMed  Google Scholar 

  165. Kortagere S, Mortensen OV, Xia J, Lester W, Fang Y, Srikanth Y, et al. Identification of novel allosteric modulators of glutamate transporter EAAT2. ACS Chem Neurosci. 2018;9(3):522–34. https://doi.org/10.1021/acschemneuro.7b00308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksey V. Zaitsev or Saak V. Ovsepian.

Ethics declarations

Funding

This research was funded by the Russian Foundation for Basic Research (RFBR), grant number 17–00-00408. SVO and PJ were supported by the project Sustainability for the National Institute of Mental Health, under grant number LO1611, with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the NPU I program.

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

AZ and IS performed the literature search and wrote the first draft. PJ and SO reviewed and revised the manuscript. The final manuscript was written by AZ and SO, and all authors contributed to and have approved the final version of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, A.V., Smolensky, I.V., Jorratt, P. et al. Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy. CNS Drugs 34, 1089–1103 (2020). https://doi.org/10.1007/s40263-020-00764-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00764-y

Navigation