Skip to main content
Log in

Pharmacokinetic Study of Conjugated Equine Estrogens in Healthy Chinese Postmenopausal Women Using a Parallel Two-Column LC–MS/MS Method

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Postmenopausal women often require estrogen supplementation to improve menopausal and postmenopausal vasomotor symptoms and maintain hormonal balance. Conjugated equine estrogens extracted from the urine of pregnant mares are commonly used to provide this estrogen replacement therapy. The complex composition of this mixture of animal sulfated metabolites makes its bioanalysis challenging such that its detailed pharmacokinetics has not been fully characterized. The purpose of this work is to reveal the pharmacokinetic behavior of conjugated equine estrogens in healthy Chinese postmenopausal women by a parallel two-column LC–MS/MS method.

Methods

An open-label study was carried out in 35 Chinese healthy postmenopausal women who received a single dose of Premarin® 0.625 mg. A high-throughput column-switching liquid chromatography-tandem mass spectrometry method was developed to determine four conjugated estrogens and two unconjugated estrogens formed by hydrolysis in vivo. The method multiplexes two high-performance liquid chromatography systems into one mass spectrometer and incorporates the positive/negative ion switching acquisition mode of mass spectrometry to significantly increase analysis efficiency. Pharmacokinetics was determined using non-compartmental methods.

Results

Both conjugated and unconjugated estrogens can be analyzed simultaneously in a single run with an analysis time of 13.0 minutes in the column-switching liquid chromatography-tandem mass spectrometry method as opposed to 23.0 minutes in a single-column liquid chromatography-tandem mass spectrometry system. The exposures (maximum concentration and area under the curve) of estrone and equilin in Chinese women were higher than those in the North American women.

Conclusions

The fully validated assay was successfully applied to a pharmacokinetic study in healthy postmenopausal Chinese women after oral administration of a conjugated equine estrogen tablet. This study suggests that Chinese postmenopausal women achieve the same level of unconjugated estrogens in plasma at a lower dose of conjugated equine estrogens than North American women.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382:446–55. https://doi.org/10.1056/NEJMcp1714787.

    Article  PubMed  Google Scholar 

  2. Schneider HPG, Birkhauser M. Quality of life in climacteric women. Climacteric. 2017;20:187–94. https://doi.org/10.1080/13697137.2017.1279599.

    Article  CAS  PubMed  Google Scholar 

  3. Mirkin S, Komm BS, Pickar JH. Conjugated estrogens for the treatment of menopausal symptoms: a review of safety data. Expert Opin Drug Saf. 2014;13:45–56. https://doi.org/10.1517/14740338.2013.824965.

    Article  CAS  PubMed  Google Scholar 

  4. Bhavnani BR. Estrogens and menopause: pharmacology of conjugated equine estrogens and their potential role in the prevention of neurodegenerative diseases such as Alzheimer’s. J Steroid Biochem Mol Biol. 2003;85:473–82. https://doi.org/10.1016/s0960-0760(03)00220-6.

    Article  CAS  PubMed  Google Scholar 

  5. Saltzman W, Abbott DH, Binkley N, Colman RJ. Maintenance of bone mass despite estrogen depletion in female common marmoset monkeys (Callithrix jacchus). Am J Primatol. 2019;81: e22905. https://doi.org/10.1002/ajp.22905.

    Article  CAS  PubMed  Google Scholar 

  6. Rooney AM, van der Meulen MCH. Mouse models to evaluate the role of estrogen receptor alpha in skeletal maintenance and adaptation. Ann N Y Acad Sci. 2017;1410:85–92. https://doi.org/10.1111/nyas.13523.

    Article  CAS  PubMed  Google Scholar 

  7. Ayaloglu-Butun F, Terzioglu-Kara E, Tokcaer-Keskin Z, Akcali KC. The effect of estrogen on bone marrow-derived rat mesenchymal stem cell maintenance: inhibiting apoptosis through the expression of Bcl-xL and Bcl-2. Stem Cell Rev. 2012;8:393–401. https://doi.org/10.1007/s12015-011-9292-0.

    Article  CAS  Google Scholar 

  8. Johmura Y, Maeda I, Suzuki N, Wu W, Goda A, Morita M, et al. Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer. J Clin Invest. 2018;128:5603–19. https://doi.org/10.1172/JCI121679.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gilligan LC, Rahman HP, Hewitt AM, Sitch AJ, Gondal A, Arvaniti A, et al. Estrogen activation by steroid sulfatase increases colorectal cancer proliferation via GPER. J Clin Endocrinol Metab. 2017;102:4435–47. https://doi.org/10.1210/jc.2016-3716.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stevanato Filho PR, Aguiar Junior S, Begnami MD, Ferreira FO, Nakagawa WT, Spencer R, et al. Estrogen receptor beta as a prognostic marker of tumor progression in colorectal cancer with familial adenomatous polyposis and sporadic polyps. Pathol Oncol Res. 2018;24:533–40. https://doi.org/10.1007/s12253-017-0268-5.

    Article  CAS  PubMed  Google Scholar 

  11. Troy SM, Hicks DR, Parker VD, Jusko WJ, Rofsky HE, Porter RJ. Differences in pharmacokinetics and comparative bioavailability between premarin® and estratab® in healthy postmenopausal women. Curr Ther Res. 1994;55:359–72. https://doi.org/10.1016/S0011-393X(05)80521-1

    Article  CAS  Google Scholar 

  12. Bhavnani BR. Pharmacokinetics and pharmacodynamics of conjugated equine estrogens: chemistry and metabolism. Proc Soc Exp Biol Med. 1998;217:6–16. https://doi.org/10.3181/00379727-217-44199.

    Article  CAS  PubMed  Google Scholar 

  13. Pasqualini JR. Estrogen sulfotransferases in breast and endometrial cancers. Ann N Y Acad Sci. 2009;1155:88–98. https://doi.org/10.1111/j.1749-6632.2009.04113.x.

    Article  CAS  PubMed  Google Scholar 

  14. Bhavnani BR, Stanczyk FZ. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action. J Steroid Biochem Mol Biol. 2014;142:16–29. https://doi.org/10.1016/j.jsbmb.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  15. Filgueira FP, Lobato NS, Nascimento DL, Ceravolo GS, Giachini FRC, Lima VV, et al. Equilin displays similar endothelium-independent vasodilator potential to 17beta-estradiol regardless of lower potential to inhibit calcium entry. Steroids. 2019;141:46–54. https://doi.org/10.1016/j.steroids.2018.11.006.

    Article  CAS  PubMed  Google Scholar 

  16. Bhamra RK, Margolis MB, Liu JH, Hendy CH, Jenkins RG, DiLiberti CE. A randomized, multiple-dose parallel study to compare the pharmacokinetic parameters of synthetic conjugated estrogens, A, administered as oral tablet or vaginal cream. Menopause. 2011;18:393–9. https://doi.org/10.1097/gme.0b013e3181f7a2d6.

    Article  PubMed  Google Scholar 

  17. Ding S, Shapiro R, Geacintov NE, Broyde S. Equilenin-derived DNA adducts to cytosine in DNA duplexes: structures and thermodynamics. Biochemistry. 2005;44:14565–76. https://doi.org/10.1021/bi051090t.

    Article  CAS  PubMed  Google Scholar 

  18. Bhavnani BR. Pharmacokinetics and pharmacodynamics of conjugated equine estrogens: chemistry and metabolism. Proc Soc Exp Biol Med. 1998;217(1):6–16. https://doi.org/10.3181/00379727-217-44199

    Article  CAS  PubMed  Google Scholar 

  19. Bulgurcuoglu AE, Yilmaz B, Chormey DS, Bakirdere S. Simultaneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy. Environ Monit Assess. 2018;190:252. https://doi.org/10.1007/s10661-018-6625-3.

    Article  CAS  PubMed  Google Scholar 

  20. Giton F, Caron P, Berube R, Belanger A, Barbier O, Fiet J. Plasma estrone sulfate assay in men: Comparison of radioimmunoassay, mass spectrometry coupled to gas chromatography (GC-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Clin Chim Acta. 2010;411:1208–13. https://doi.org/10.1016/j.cca.2010.04.022.

    Article  CAS  PubMed  Google Scholar 

  21. Ankarberg-Lindgren C, Dahlgren J, Andersson MX. High-sensitivity quantification of serum androstenedione, testosterone, dihydrotestosterone, estrone and estradiol by gas chromatography-tandem mass spectrometry with sex- and puberty-specific reference intervals. J Steroid Biochem Mol Biol. 2018;183:116–24. https://doi.org/10.1016/j.jsbmb.2018.06.005.

    Article  CAS  PubMed  Google Scholar 

  22. Xu L, Spink DC. Analysis of steroidal estrogens as pyridine-3-sulfonyl derivatives by liquid chromatography electrospray tandem mass spectrometry. Anal Biochem. 2008;375:105–14. https://doi.org/10.1016/j.ab.2007.11.028.

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Roman JM, Issaq HJ, Keefer LK, Veenstra TD, Ziegler RG. Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem. 2007;79:7813–21. https://doi.org/10.1021/ac070494j.

    Article  CAS  PubMed  Google Scholar 

  24. Licea-Perez H, Wang S, Bowen CL, Yang E. A semi-automated 96-well plate method for the simultaneous determination of oral contraceptives concentrations in human plasma using ultra performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;852:69–76. https://doi.org/10.1016/j.jchromb.2006.12.052.

    Article  CAS  PubMed  Google Scholar 

  25. Laforest S, Pelletier M, Denver N, Poirier B, Nguyen S, Walker BR, et al. Simultaneous quantification of estrogens and glucocorticoids in human adipose tissue by liquid-chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol. 2019;195: 105476. https://doi.org/10.1016/j.jsbmb.2019.105476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Henion J. Quantitative and qualitative determination of estrogen sulfates in human urine by liquid chromatography/tandem mass spectrometry using 96-well technology. Anal Chem. 1999;71:3955–64. https://doi.org/10.1021/ac990162h.

    Article  CAS  PubMed  Google Scholar 

  27. Simon E, Schifferli A, Bucher TB, Olbrich D, Werner I, Vermeirssen ELM. Solid-phase extraction of estrogens and herbicides from environmental waters for bioassay analysis-effects of sample volume on recoveries. Anal Bioanal Chem. 2019;411:2057–69. https://doi.org/10.1007/s00216-019-01628-1.

    Article  CAS  PubMed  Google Scholar 

  28. Qin F, Zhao YY, Sawyer MB, Li XF. Hydrophilic interaction liquid chromatography-tandem mass spectrometry determination of estrogen conjugates in human urine. Anal Chem. 2008;80:3404–11. https://doi.org/10.1021/ac702613k.

    Article  CAS  PubMed  Google Scholar 

  29. Labrie F, Ke Y, Gonthier R, Belanger A. Why both LC-MS/MS and FDA-compliant validation are essential for accurate estrogen assays? J Steroid Biochem Mol Biol. 2015;149:89–91. https://doi.org/10.1016/j.jsbmb.2015.02.003.

    Article  CAS  PubMed  Google Scholar 

  30. Smith G. Bioanalytical method validation: notable points in the 2009 draft EMA guideline and differences with the 2001 FDA guidance. Bioanalysis. 2010;2:929–35. https://doi.org/10.4155/bio.10.42.

    Article  CAS  PubMed  Google Scholar 

  31. Zimmer D, New US. FDA draft guidance on bioanalytical method validation versus current FDA and EMA guidelines: chromatographic methods and ISR. Bioanalysis. 2014;6:13–9. https://doi.org/10.4155/bio.13.298.

    Article  CAS  PubMed  Google Scholar 

  32. US FDA. Product-specific guidances for generic drug development (draft guidance on conjugated estrogens). https://www.accessdata.fda.gov/drugsatfda_docs/psg/Conjugated_estrogens_004782_RC12-14.pdf. Accessed 13 Sep 2022.

  33. Giese RW. Measurement of endogenous estrogens: analytical challenges and recent advances. J Chromatogr A. 2003;1000:401–12. https://doi.org/10.1016/s0021-9673(03)00306-6.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, Han L, Wang J, Lin H, Ke P, Zhuang J, et al. Simultaneous quantitation of endogenous estrone, 17β-estradiol, and estriol in human serum by isotope-dilution liquid chromatography-tandem mass spectrometry for clinical laboratory applications. Anal Bioanal Chem. 2017;409:2627–38. https://doi.org/10.1007/s00216-017-0207-z.

    Article  CAS  PubMed  Google Scholar 

  35. Wyeth Pharmaceuticals LLC, a subsidiary of Pfizer Inc. Premarin prescribing information. http://labeling.pfizer.com/showlabeling.aspx?id=131.

  36. Zuo HL, Deng Y, Wang YF, Gao LL, Xue W, Zhu SY, et al. Effect of low-dose or standard-dose conjugated equine estrogen combined with different progesterone on bone density in menopause syndrome women. Zhonghua Fu Chan Ke Za Zhi. 2018;53:243–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Gao or Jingkai Gu.

Ethics declarations

Funding

This research was supported by the National Natural Science Foundation of China (Grant numbers 81703607, 81430087, 81603182, 81673396), the Fundamental Research Fund for the Central Universities (Grant numbers DUT21RC(3)057, DUT18LK24, DUT20RC(4)012), the Doctoral Scientific Research Foundation of Liaoning Province (20170520115), and Major National Science and Technology of China (2017ZX09101001).

Conflicts of interest/competing interests

Meiyun Shi, Lei Yin, Yantong Sun, Can Wang, Lanlan Cai, Tinglan Zhang, Xiaotong Zhou, J. Paul Fawcett, Xiaoli Gao and Jingkai Gu have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

The study was approved by the Ethics Committee of the Second Clinical Hospital affiliated to Chinese Medical University, Shenyang, China.

Consent to participate

All subjects provided written informed consent before participating in the study.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

All authors designed the studies and were involved in the preparation of the manuscript, provided input, and reviewed the final draft for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Yin, L., Sun, Y. et al. Pharmacokinetic Study of Conjugated Equine Estrogens in Healthy Chinese Postmenopausal Women Using a Parallel Two-Column LC–MS/MS Method. Clin Pharmacokinet 61, 1571–1583 (2022). https://doi.org/10.1007/s40262-022-01177-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01177-4

Navigation