Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Drugs in the Central Nervous System

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Despite contributing significantly to the burden of global disease, the translation of new treatment strategies for diseases of the central nervous system (CNS) from animals to humans remains challenging, with a high attrition rate in the development of CNS drugs. The failure of clinical trials for CNS therapies can be partially explained by factors related to pharmacokinetics/pharmacodynamics (PK/PD), such as lack of efficacy or improper selection of the initial dosage. A focused assessment is needed for CNS-acting drugs in first-in-human studies to identify the differences in PK/PD from animal models, as well as to choose the appropriate dose. In this review, we summarize the available literature from human studies on the PK and PD in brain tissue, cerebrospinal fluid, and interstitial fluid for drugs used in the treatment of psychosis, Alzheimer’s disease and neuro-HIV, and address critical questions in the field. We also explore newer methods to characterize PK/PD relationships that may lead to more efficient dose selection in CNS drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. Neurological Disorders: Public Health Challenges. 2006. http://www.who.int/mental_health/neurology/neurodiso/en/. Accessed 1 Feb 2018.

  2. Patel V, Chisholm D, Parikh R, Charlson FJ, Degenhardt L, Dua T, et al. Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition. Lancet. 2016;387(10028):1672–85.

  3. Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer’s Res Ther. 2014;6:1–7.

    Article  Google Scholar 

  4. Benedetti F, Carlino E, Piedimonte A. Increasing uncertainty in CNS clinical trials: the role of placebo, nocebo, and Hawthorne effects. Lancet Neurol. 2016;15(7):736–47.

    Article  PubMed  Google Scholar 

  5. Kesselheim AS, Hwang TJ, Franklin JM. Two decades of new drug development for central nervous system disorders. Nat Rev. 2015;14(12):815–6.

    CAS  Google Scholar 

  6. Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov. 2007;6:521–32.

    Article  PubMed  CAS  Google Scholar 

  7. Miller G. Is Pharma Running Out of Brainy Ideas? Science. 2010;329(5991):502–4.

    Article  PubMed  CAS  Google Scholar 

  8. Choi DW, Armitage R, Brady LS, Coetzee T, Fisher W, Hyman S, et al. Perspective medicines for the mind: policy-based “pull” incentives for creating breakthrough CNS drugs. Neuron. 2013;84(3):554–63.

    Article  CAS  Google Scholar 

  9. Goetghebeur PJD, Swartz JE. True alignment of preclinical and clinical research to enhance success in CNS drug development: a review of the current evidence. J Psychopharmacol. 2016;586:1–9.

    Google Scholar 

  10. de Lange ECM, Hammarlund-Udenaes M. Translational aspects of blood-brain barrier transport and central nervous system effects of drugs: from discovery to patients. Clin Pharmacol Ther. 2015;97(4):380–94.

    Article  PubMed  Google Scholar 

  11. Aronson JK. Concentration-effect and dose-response relations in clinical pharmacology. Br J Clin Pharmacol. 2007;63(3):255–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Markou A, Chiamulera C, Geyer MA, Tricklebank M. Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology. 2009;34(1):74–89.

    Article  PubMed  CAS  Google Scholar 

  13. Deo AK, Theil FP, Nicolas JM. Confounding parameters in preclinical assessment of blood-brain barrier permeation: an overview with emphasis on species differences and effect of disease states. Mol Pharm. 2013;10(5):1581–95.

    Article  PubMed  CAS  Google Scholar 

  14. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system. Drug Drug Discov. 2005;2:554–71.

    Google Scholar 

  15. Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud P-O, Deli MA, et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;0271678X16630991.

  16. Appelt-Menzel A, Cubukova A, Günther K, Edenhofer F, Piontek J, Krause G, et al. Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep. 2017;8(4):894–906.

    Article  CAS  Google Scholar 

  17. Palmiotti CA, Prasad S, Naik P, Abul KMD, Sajja RK, Achyuta AH, et al. In vitro cerebrovascular modeling in the 21st century: current and prospective technologies. Pharm Res. 2014;31(12):3229–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fridén M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M. In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos. 2007;35(9):1711–9.

    Article  PubMed  CAS  Google Scholar 

  19. Wiseman JM, Ifa DR, Zhu Y. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci USA. 2008;105(47):18120–5.

    Article  PubMed  Google Scholar 

  20. Thompson CG, Bokhart MT, Sykes C, Adamson L, Fedoriw Y, Luciw PA, et al. Mass spectrometry imaging reveals heterogeneous efavirenz distribution within putative HIV reservoirs. Antimicrob Agents Chemother. 2015;59(5):2944–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shobo A, Bratkowska D, Baijnath S, Naiker S, Somboro AM, Bester LA, et al. Tissue distribution of pretomanid in rat brain via mass spectrometry imaging. Xenobiotica. 2016;46(3):247–52.

    Article  PubMed  CAS  Google Scholar 

  22. Aikawa H, Hayashi M, Ryu S, Yamashita M, Ohtsuka N, Nishidate M, et al. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging. Sci Rep. 2016;6:23749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Varnäs K, Varrone A, Farde L. Modeling of PET data in CNS drug discovery and development. J Pharmacokinet Pharmacodyn. 2013;40(3):267–79.

    Article  PubMed  CAS  Google Scholar 

  24. Shannon RJ, Carpenter KLH, Guilfoyle MR, Helmy A, Hutchinson PJ. Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn. 2013;40(3):343–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lindberger M, Tomson T, Lars S. Microdialysis sampling of carbamazepine, phenytoin and phenobarbital in subcutaneous extracellular fluid and subdural cerebrospinal fluid in humans: an in vitro and in vivo study of adsorption to the sampling device. J Pharmacol Toxicol. 2002;91(4):158–65.

    Article  CAS  Google Scholar 

  26. Gaohua L, Neuhoff S, Johnson TN, Rostami-hodjegan A, Jamei M, Centre BE, et al. Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge: estimating time varying CSF drug concentrations and their variability using in vitro data. Drug Metab Pharmacokinet. 2016;31(3):1–49.

    Article  CAS  Google Scholar 

  27. Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, et al. Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab Dispos. 2006;34(9):1443–7.

    Article  PubMed  CAS  Google Scholar 

  28. Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9:929–39.

    Article  PubMed  CAS  Google Scholar 

  29. Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Hong W, Bredberg U, et al. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem. 2009;52(20):6233–43.

    Article  PubMed  CAS  Google Scholar 

  30. Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y. Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a. J Pharmacol Exp Ther. 2011;339(3):935–44.

    Article  PubMed  CAS  Google Scholar 

  31. Shen DD, Artru AA, Adkison KK. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev. 2004;56(12):1825–57.

    Article  PubMed  CAS  Google Scholar 

  32. De Lange ECM. Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn. 2013;40(3):315–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kassem NA, Deane R, Segal MB, Chen R, Preston JE. Thyroxine (T4) transfer from CSF to choroid plexus and ventricular brain regions in rabbit: contributory role of P-glycoprotein and organic anion transporting polypeptides. Brain Res. 2007;1181(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  34. Westerhout J, Smeets J, Danhof M, De Lange ECM. The impact of P-gp functionality on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokinet Pharmacodyn. 2013;40(3):327–42.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nau R, Zysk G, Thiel A, Prange HW. Pharmacokinetic quantification of the exchange of drugs between blood and cerebrospinal fluid in man. Eur J Clin Pharmacol. 1993;45(5):469–75.

    Article  PubMed  CAS  Google Scholar 

  36. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yilmaz A, Watson V, Dickinson L, Back D. Efavirenz pharmacokinetics in cerebrospinal fluid and plasma over a 24-hour dosing interval. Antimicrob Agents Chemother. 2012;56(9):4583–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chicano-Piá PV, Cercós-Lletí AC, Romá-Sánchez E. Pharmacokinetic model for tobramycin in acinetobacter meningitis. Ann Pharmacother. 2002;36(1):83–6.

    Article  PubMed  Google Scholar 

  39. Kühnen E, Pfeifer G, Frenkel C. Penetration of fosfomycin into cerebrospinal fluid across non-inflamed and inflamed meninges. Infection. 1987;15(6):422–4.

    Article  PubMed  Google Scholar 

  40. Capparelli EV, Letendre SL, Ellis RJ, Patel P, Holland D, Mccutchan JA. Population pharmacokinetics of abacavir in plasma and cerebrospinal fluid population pharmacokinetics of abacavir in plasma and cerebrospinal fluid. Antimicrob Agents Chemother. 2005;49(6):2504–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rambeck B, Jürgens UH, May TW, Wolfgang Pannek H, Behne F, Ebner A, et al. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia. 2006;47(4):681–94.

    Article  PubMed  CAS  Google Scholar 

  42. Hammarlund-Udenaes M. Active-site concentrations of chemicals: are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol. 2010;106(3):215–20.

    Article  PubMed  CAS  Google Scholar 

  43. Kakee A, Terasaki T, Sugiyama Y. Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther. 1996;277(3):1550–9.

    PubMed  CAS  Google Scholar 

  44. Calcagno A, Di Perri G, Bonora S. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet. 2014;53(10):891–906.

    Article  PubMed  CAS  Google Scholar 

  45. Ahn SM, Byun K, Cho K, Kim JY, Yoo JS, Kim D, et al. Human microglial cells synthesize albumin in brain. PLoS One. 2008;3(7):4–9.

    Article  CAS  Google Scholar 

  46. Read KD, Braggio S. Assessing brain free fraction in early drug discovery. Expert Opin Drug Metab Toxicol. 2010;6(3):337–44.

    Article  PubMed  CAS  Google Scholar 

  47. Di L, Umland JP, Chang G, Huang Y, Lin Z, Scott DO, et al. Species independence in brain tissue binding using brain homogenates. Drug Metab Dispos. 2011;39(7):1270–7.

    Article  PubMed  CAS  Google Scholar 

  48. Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53(4):569–96.

    Article  PubMed  CAS  Google Scholar 

  49. Hartz AMS, Bauer B. ABC transporters in the CNS—an inventory. Curr Pharmaceutic Biotechnol. 2011;656–73.

  50. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–45.

    Article  PubMed  CAS  Google Scholar 

  51. Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRX. 2005;2(1):86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood-brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Leggas M, Adachi M, Scheffer G, Sun D, Wielinga P, Du G, et al. MRP4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol. 2004;24(17):7612–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang S-M, Liu X, et al. Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther. 2013;94(1):80–94.

    Article  PubMed  CAS  Google Scholar 

  55. van Praag RM, Weverling GJ, Portegies P, Jurriaans S, Zhou XJ, Turner-Foisy ML, et al. Enhanced penetration of indinavir in cerebrospinal fluid and semen after the addition of low-dose ritonavir. AIDS. 2000;14(9):1187–94.

    Article  PubMed  Google Scholar 

  56. Toda R, Kawazu K, Oyabu M, Miyazaki T, Kiuchi Y. Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci. 2011;100(9):3904–11.

    Article  PubMed  CAS  Google Scholar 

  57. Liu X, Chen C. Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel. 2005;8(4):505–12.

    PubMed  CAS  Google Scholar 

  58. Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther. 2005;313(3):1254–62.

    Article  PubMed  CAS  Google Scholar 

  59. Curley P, Rajoli RKR, Moss DM, Liptrott NJ, Letendre S, Owen A. Efavirenz is predicted to accumulate in brain tissue: and in silico, in vitro and in vivo investigation. Antimicrob Agents Chemother. 2017;61(1):1–10.

    Article  Google Scholar 

  60. Kornhuber J, Schoppmeyer K, Riederer P. Affinity of 1-aminoadamantanes for the sigma binding site in post-mortem human frontal cortex. Neurosci Lett. 1993;163(2):129–31.

    Article  PubMed  CAS  Google Scholar 

  61. Yokoi F, Grunder G, Biziere K, Stephane M, Dogan AS, Dannals RF, et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology. 2002;27(2):248–59.

    Article  PubMed  CAS  Google Scholar 

  62. Farde L, Wiesel F, Halldin C, Sedvall G. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry. 1988;45(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  63. Mamo D, Kapur S, Shammi CM, Papatheodorou G, Mann S, Therrien F, Pharm D, et al. A PET study of dopamine D 2 and serotonin 5-HT 2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psychiatry. 2004;161(5):818–25.

    Article  PubMed  Google Scholar 

  64. Sato H, Ito C, Tashiro M, Hiraoka K, Shibuya K, Funaki Y, et al. Histamine H1 receptor occupancy by the new-generation antidepressants fluvoxamine and mirtazapine: a positron emission tomography study in healthy volunteers. Psychopharmacology. 2013;230(2):227–34.

    Article  PubMed  CAS  Google Scholar 

  65. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.

    Article  PubMed  Google Scholar 

  66. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Overall JE, Gorham DR. The brief psychiatric rating scale. Psychol Rep. 1962;10(3):799–812.

    Article  Google Scholar 

  68. Robert P, Ferris S, Gauthier S, Ihl R, Winblad B, Tennigkeit F. Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice? Alzheimers Res Ther. 2010;2(4):24.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dunlop BW, Mayberg HS. Neuroimaging-based biomarkers for treatment selection in major depressive disorder. Dialog Clin Neurosci. 2014;16(4):479–90.

    Google Scholar 

  70. Ene L, Duiculescu D, Ruta SM. How much do antiretroviral drugs penetrate into the central nervous system? J Med Life. 2011;4(4):432–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kornhuber J, Schultz A, Wiltfang J, Meineke I, Gleiter CH, Zöchling R, et al. Persistence of haloperidol in human brain tissue. Am J Psychiatry. 1999;156(6):885–90.

    Article  PubMed  CAS  Google Scholar 

  73. Sampedro MC, Unceta N, Gómez-Caballero A, Callado LF, Morentin B, Goicolea MA, et al. Screening and quantification of antipsychotic drugs in human brain tissue by liquid chromatography-tandem mass spectrometry: application to postmortem diagnostics of forensic interest. Forensic Sci Int. 2012;219(1–3):172–8.

    Article  PubMed  CAS  Google Scholar 

  74. Caccia S. Pharmacokinetics and metabolism update for some recent antipsychotics. Expert Opin Drug Metab Toxicol. 2011;7(7):829–46.

    Article  PubMed  CAS  Google Scholar 

  75. Nyberg G, Axelsson R, Mftrtensson E. Cerebrospinal fluid concentrations of thioridazine and its main metabolites in psychiatric patients. Eur J Clin Pharmacol. 1981;19(2):139–48.

    Article  PubMed  CAS  Google Scholar 

  76. Cohen BM, Lipinski JF, Waternaux C. A fixed dose study of the plasma concentration and clinical effects of thioridazine and its major metabolites. Psychopharmacology. 1989;97(4):481–8.

    Article  PubMed  CAS  Google Scholar 

  77. Alqahtani S, Kaddoumi A. Development of a physiologically based pharmacokinetic/pharmacodynamic model to predict the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics represented by receptor/transporter occupancy of central nervous system drugs. Clin Pharmacokinet. 2016;55(8):957–69.

    Article  PubMed  CAS  Google Scholar 

  78. Li CH, Stratford RE, Velez de Mendizabal N, Cremers TI, Pollock BG, Mulsant BH, et al. Prediction of brain clozapine and norclozapine concentrations in humans from a scaled pharmacokinetic model for rat brain and plasma pharmacokinetics. J Transl Med. 2014;12(1):203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Garver DL. Neuroleptic drug levels and antipsychotic effects: a difficult correlation; potential advantage of free (or derivative) versus total plasma levels. J Clin Psychopharmacol. 1989;9(4):277–81.

    Article  PubMed  CAS  Google Scholar 

  80. Wode-Helgodt BB. Clinical effects and drug concentrations in plasma and cerebrospinal fluid in psychotic patients treated with fixed doses of chlorpromazine. Acta Psychiatr Scand. 1978;58(2):149–73.

    Article  PubMed  CAS  Google Scholar 

  81. Rimón R, Averbuch I, Rozick P, Fijman-Danilovich L, Kara T, Dasberg H, et al. Serum and CSF levels of haloperidol by radioimmunoassay and radioreceptor assay during high-dose therapy of resistant schizophrenic patients. Psychopharmacology. 1981;73(2):197–9.

    Article  PubMed  Google Scholar 

  82. Kim E, Howes OD, Kim B-H, Jeong JM, Lee JS, Jang I-J, et al. Predicting brain occupancy from plasma levels using PET: superiority of combining pharmacokinetics with pharmacodynamics while modeling the relationship. J Cereb Blood Flow Metab. 2012;32(4):759–68.

    Article  PubMed  CAS  Google Scholar 

  83. Greenblatt DJ, von Moltke LL, Ehrenberg BL, Harmatz JS, Corbett KE, Wallace DW, et al. Kinetics and dynamics of lorazepam during and after continuous intravenous infusion. Crit Care Med. 2000;28(8):2750–7.

    Article  PubMed  CAS  Google Scholar 

  84. Carrol J. Another Alzheimer’s drug flops in pivotal clinical trial. Science. Epub 15 Feb 2017. https://doi.org/10.1126/science.aal0759.

  85. Mochida I, Shimosegawa E, Kanai Y, Naka S, Isohashi K, Horitsugi G, et al. Whole-body distribution of donepezil as an acetylcholinesterase inhibitor after oral administration in normal human subjects: a C-donepezil PET study. Asia Ocean J Nucl Med Biol. 2017;5(1):3–9.

    PubMed  PubMed Central  Google Scholar 

  86. Valis M, Masopust J, Vysata O, Hort J, Dolezal R, Tomek J, et al. Concentration of donepezil in the cerebrospinal fluid of AD patients: evaluation of dosage sufficiency in standard treatment strategy. Neurotox Res. 2017;31(1):162–8.

    Article  PubMed  CAS  Google Scholar 

  87. Darreh-Shori T, Meurling L, Pettersson T, Hugosson K, Hellström-Lindahl E, Andreasen N, et al. Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer’s disease following chronic donepezil treatment. J Neural Transm. 2006;113(11):1791–801.

    Article  PubMed  CAS  Google Scholar 

  88. Kornhuber J, Quack G. Cerebrospinal fluid and serum concentrations of the N-methyl-d-aspartate (NMDA) receptor antagonist memantine in man. Neurosci Lett. 1995;195(2):137–9.

    Article  PubMed  CAS  Google Scholar 

  89. Rohrig TP, Hicks CA. Brain tissue: a viable postmortem toxicological specimen. J Anal Toxicol. 2015;39(2):137–9.

    Article  PubMed  CAS  Google Scholar 

  90. Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of alzheimer’s disease. Clin Pharmacokinet. 2013;52(4):225–41.

    Article  PubMed  CAS  Google Scholar 

  91. Cutler NR, Polinsky RJ, Sramek JJ, Enz A, Jhee SS, Mancione L, et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand. 1998;97(4):244–50.

    Article  PubMed  CAS  Google Scholar 

  92. Talesa VN. Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev. 2001;122(16):1961–9.

    Article  PubMed  CAS  Google Scholar 

  93. Wattmo C, Jedenius E, Blennow K, Wallin AK. Dose and plasma concentration of galantamine in Alzheimer’s disease: clinical application. Alzheimers Res Ther. 2013;5(1):1–9.

    Article  CAS  Google Scholar 

  94. Fois AF, Brew BJ. The Potential of the CNS as a reservoir for HIV-1 infection: implications for HIV eradication. Curr HIV/AIDS Rep. 2015;12(2):299–303.

    Article  PubMed  Google Scholar 

  95. Avalos CR, Price SL, Forsyth ER, Pin JN, Shirk EN, Bullock BT, et al. Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques. J Virol. 2016;90(12):5643–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. Aids. 2017;31(1):5–14.

    Article  PubMed  CAS  Google Scholar 

  97. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80:1415–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Decloedt EH, Rosenkranz B, Maartens G, Joska J. Central nervous system penetration of antiretroviral drugs: pharmacokinetic, pharmacodynamic and pharmacogenomic considerations. Clin Pharmacokinet. 2015;54(6):581–98.

    Article  PubMed  CAS  Google Scholar 

  99. Letendre S. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23(11):1359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2012;25(3):357–65.

    Article  Google Scholar 

  102. Baker LM, Paul RH, Heaps-Woodruff JM, Chang JY, Ortega M, Margolin Z, et al. The effect of central nervous system penetration effectiveness of highly active antiretroviral therapy on neuropsychological performance and neuroimaging in HIV infected individuals. J Neuroimmune Pharmacol. 2015;10(3):487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Marra CM. HIV-associated neurocognitive disorders and central nervous system drug penetration: what next? Antivir Ther. 2015;20(4):365–7.

    Article  PubMed  Google Scholar 

  104. Caniglia EC, Cain LE, Justice A, Tate J, Logan R, Sabin C, et al. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology. 2014;83(2):134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bumpus N, Ma Q, Best B, Moore D, Ellis RJ, Crescini M, et al. Antiretroviral concentrations in brain tissue are similar to or exceed those in CSF. Conference on Retroviruses and Opportunistic Infections. 2015: Seattle.

  106. Srinivas N, Fallon JK, Sykes C, White N. Shiv infection and drug transporters influence brain tissue concentrations of efavirenz. International AIDS Society. 2017: Paris.

  107. Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neurovirol. 2012;18(5):388–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Llorens F, Schmitz M, Ferrer I, Zerr I. CSF biomarkers in neurodegenerative and vascular dementias. Prog Neurobiol. 2016;138–140:36–53.

    Article  PubMed  CAS  Google Scholar 

  109. Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimer’s Dement Transl Res Clin Interv. 2017;3(3):367–84.

    Article  Google Scholar 

  110. Le Bastard N, Aerts L, Sleegers K, Martin J-J, Van Broeckhoven C, De Deyn PP, et al. Longitudinal stability of cerebrospinal fluid biomarker levels: fulfilled requirement for pharmacodynamic markers in Alzheimer’s disease. J Alzheimer’s Dis. 2013;33(3):807–22.

    Article  CAS  Google Scholar 

  111. Kielbasa W, Lobo E. Pharmacodynamics of norepinephrine reuptake inhibition: modeling the peripheral and central effects of atomoxetine, duloxetine, and edivoxetine on the biomarker 3,4-dihydroxyphenylglycol in humans. J Clin Pharmacol. 2015;55(12):1422–31.

    Article  PubMed  CAS  Google Scholar 

  112. McGuire J, Gill A, Douglas S, Kolson D. Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders. J Neurovirol. 2013;19:S57.

    Article  CAS  Google Scholar 

  113. Gray LR, Brew BJ, Churchill MJ. Strategies to target HIV-1 in the central nervous system. Curr Opin HIV AIDS. 2016;11(4):371–5.

    Article  PubMed  CAS  Google Scholar 

  114. Ball K, Bouzom F, Scherrmann J-M, Walther B, Declèves X. Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier-towards a mechanistic IVIVE-based approach. AAPS J. 2013;15(4):913–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Trapa PE, Belova E, Liras JL, Scott DO, Steyn SJ. Insights from an integrated physiologically based pharmacokinetic model for brain penetration. J Pharm Sci. 2016;105(2):965–71.

    Article  PubMed  CAS  Google Scholar 

  116. Yamamoto Y, Välitalo PA, van den Berg DJ, Hartman R, van den Brink W, Wong YC, et al. A generic multi-compartmental CNS distribution model structure for 9 drugs allows prediction of human brain target site concentrations. Pharm Res. 2017;34(2):333–51.

    Article  PubMed  CAS  Google Scholar 

  117. Liu X, Wong H, Scearce-Levie K, Watts RJ, Coraggio M, Shin YG, et al. Mechanistic pharmacokinetic-pharmacodynamic modeling of BACE1 inhibition in monkeys: development of a predictive model for amyloid precursor protein processings. Drug Metab Dispos. 2013;41(7):1319–28.

    Article  PubMed  CAS  Google Scholar 

  118. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK, et al. Developing “integrative” zebrafish models of behavioral and metabolic disorders. Behav Brain Res. 2013;256:172–87.

    Article  PubMed  Google Scholar 

  120. Auvin S, Pineda E, Shin D, Gressens P, Mazarati A. Novel animal models of pediatric epilepsy. Neurotherapeutics. 2012;9(2):245–61.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Honeycutt JB, Sheridan PA, Matsushima GK, Garcia JV. Humanized mouse models for HIV-1 infection of the CNS. J Neurovirol. 2015;21(3):301–9.

    Article  PubMed  CAS  Google Scholar 

  122. Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, et al. Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci. 2011;100(9):3939–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rachael Posey for devising the search strategy for the review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela D. M. Kashuba.

Ethics declarations

Funding

This work was funded by the Center for AIDS Research (Grant number CFAR P30 AI50410) and the NIH/NIAID (Grant number R01AI111891-04). Nithya Srinivas is supported by the Royster Society of Fellows, UNC Chapel Hill.

Conflicts of interest

Nithya Srinivas, Kaitlyn Maffuid, and Angela Kashuba declare that they have no conflicts of interest that might be relevant to the contents of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, N., Maffuid, K. & Kashuba, A.D.M. Clinical Pharmacokinetics and Pharmacodynamics of Drugs in the Central Nervous System. Clin Pharmacokinet 57, 1059–1074 (2018). https://doi.org/10.1007/s40262-018-0632-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0632-y

Navigation