Skip to main content
Log in

Modelling the Sitagliptin Effect on Dipeptidyl Peptidase-4 Activity in Adults with Haematological Malignancies After Umbilical Cord Blood Haematopoietic Cell Transplantation

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Dipeptidyl peptidase-4 (DPP4) inhibition is a potential strategy to increase the engraftment rate of haematopoietic stem/progenitor cells. A recent clinical trial using sitagliptin, a DPP4 inhibitor approved for type 2 diabetes mellitus, has been shown to be a promising approach in adults with haematological malignancies after umbilical cord blood (UCB) haematopoietic cell transplantation (HCT). On the basis of data from this clinical trial, a semi-mechanistic model was developed to simultaneously describe DPP4 activity after multiple doses of sitagliptin in subjects with haematological malignancies after a single-unit UCB HCT.

Methods

The clinical study included 24 patients who received myeloablative conditioning followed by oral sitagliptin with single-unit UCB HCT. Using a nonlinear mixed-effects approach, a semi-mechanistic pharmacokinetic–pharmacodynamic model was developed to describe DPP4 activity from these trial data, using NONMEM version 7.2 software. The model was used to drive Monte Carlo simulations to probe the various dosage schedules and the attendant DPP4 response.

Results

The disposition of sitagliptin in plasma was best described by a two-compartment model. The relationship between sitagliptin concentrations and DPP4 activity was best described by an indirect response model with a negative feedback loop. Simulations showed that twice daily or three times daily dosage schedules were superior to a once daily schedule for maximal DPP4 inhibition at the lowest sitagliptin exposure.

Conclusion

This study provides the first pharmacokinetic–pharmacodynamic model of sitagliptin in the context of HCT, and provides a valuable tool for exploration of optimal dosing regimens, which are critical for improving the time to engraftment in patients after UCB HCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neumiller JJ. Clinical pharmacology of incretin therapies for type 2 diabetes mellitus: implications for treatment. Clin Ther. 2011;33(5):528–76.

    Article  CAS  Google Scholar 

  2. Christopherson KW 2nd, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol. 2002;169(12):7000–8.

    Article  CAS  Google Scholar 

  3. Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee Y, Mantel C, et al. Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol. 2003;170(1):421–9.

    Article  CAS  Google Scholar 

  4. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283(5403):845–8.

    Article  CAS  Google Scholar 

  5. Broxmeyer HE, Hoggatt J, O’Leary HA, Mantel C, Chitteti BR, Cooper S, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18(12):1786–96.

    Article  CAS  Google Scholar 

  6. Brunstein CG, Setubal DC, Wagner JE. Expanding the role of umbilical cord blood transplantation. Br J Haematol. 2007;137(1):20–35.

    Article  Google Scholar 

  7. Rocha V, Broxmeyer HE. New approaches for improving engraftment after cord blood transplantation. Biol Blood Marrow Transplant. 2010;16(1 Suppl):S126–32.

    Article  Google Scholar 

  8. Broxmeyer HE, Farag SS, Rocha V. Cord blood hematopoietic cell transplantation. In: Thomas’ hematopoietic cell transplantation. New York: Wiley-Blackwell; 2013.

  9. Farag SS, Srivastava S, Messina-Graham S, Schwartz J, Robertson MJ, Abonour R, et al. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev. 2013;22(7):1007–15.

    Article  CAS  Google Scholar 

  10. Bergman AJ, Stevens C, Zhou Y, Yi B, Laethem M, De Smet M, et al. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther. 2006;28(1):55–72.

    Article  CAS  Google Scholar 

  11. Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, De Smet M, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther. 2005;78(6):675–88.

    Article  CAS  Google Scholar 

  12. Vincent SH, Reed JR, Bergman AJ, Elmore CS, Zhu B, Xu S, et al. Metabolism and excretion of the dipeptidyl peptidase 4 inhibitor [14C]sitagliptin in humans. Drug Metab Dispos. 2007;35(4):533–8.

    Article  CAS  Google Scholar 

  13. Kim BH, Kim SE, Kang D, Lim KS, Kim JR, Jang IJ, et al. Pharmacokinetic–pharmacodynamic modeling of biomarker response to sitagliptin in healthy volunteers. Basic Clin Pharmacol Toxicol. 2013;113(2):113–25.

    Article  CAS  Google Scholar 

  14. Herman GA, Mistry GC, Yi B, Bergman AJ, Wang AQ, Zeng W, et al. Evaluation of pharmacokinetic parameters and dipeptidyl peptidase-4 inhibition following single doses of sitagliptin in healthy, young Japanese males. Br J Clin Pharmacol. 2011;71(3):429–36.

    Article  CAS  Google Scholar 

  15. Bergman A, Mistry GC, Luo WL, Liu Q, Stone J, Wang A, et al. Dose-proportionality of a final market image sitagliptin formulation, an oral dipeptidyl peptidase-4 inhibitor, in healthy volunteers. Biopharm Drug Dispos. 2007;28(6):307–13.

    Article  CAS  Google Scholar 

  16. Herman GA, Bergman A, Liu F, Stevens C, Wang AQ, Zeng W, et al. Pharmacokinetics and pharmacodynamic effects of the oral DPP-4 inhibitor sitagliptin in middle-aged obese subjects. J Clin Pharmacol. 2006;46(8):876–86.

    Article  CAS  Google Scholar 

  17. Bergman A, Ebel D, Liu F, Stone J, Wang A, Zeng W, et al. Absolute bioavailability of sitagliptin, an oral dipeptidyl peptidase-4 inhibitor, in healthy volunteers. Biopharm Drug Dispos. 2007;28(6):315–22.

    Article  CAS  Google Scholar 

  18. Hooker AC, Staatz CE, Karlsson MO. Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res. 2007;24(12):2187–97.

    Article  CAS  Google Scholar 

  19. Ludden TM, Beal SL, Sheiner LB. Comparison of the Akaike information criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm. 1994;22(5):431–45.

    Article  CAS  Google Scholar 

  20. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75(2):85–94.

    Article  Google Scholar 

  21. Ou X, O’Leary H, Broxmeyer HE. Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood. 2013;122(2):161–9.

    Article  CAS  Google Scholar 

  22. O’Leary H, Ou X, Broxmeyer HE. The role of dipeptidyl peptidase 4 in hematopoiesis and transplantation. Curr Opin Hematol. 2013;20(4):314–9.

    Article  Google Scholar 

  23. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305(5686):1000–3.

    Article  CAS  Google Scholar 

  24. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337(6):373–81.

    Article  CAS  Google Scholar 

  25. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339(22):1565–77.

    Article  CAS  Google Scholar 

  26. Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100(5):1611–8.

    CAS  PubMed  Google Scholar 

  27. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4):491–8.

    Article  CAS  Google Scholar 

  28. Rosenstock J, Zinman B. Dipeptidyl peptidase-4 inhibitors and the management of type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2007;14(2):98–107.

    Article  CAS  Google Scholar 

  29. Jacobson P, Uberti J, Davis W, Ratanatharathorn V. Tacrolimus: a new agent for the prevention of graft-versus-host disease in hematopoietic stem cell transplantation. Bone Marrow Transplant. 1998;22(3):217–25.

    Article  CAS  Google Scholar 

  30. Jones RJ, Grochow LB. Pharmacology of bone marrow transplantation conditioning regimens. Ann N Y Acad Sci. 1995;29(770):237–41.

    Article  Google Scholar 

  31. Nieto Y, Vaughan WP. Pharmacokinetics of high-dose chemotherapy. Bone Marrow Transplant. 2004;33(3):259–69.

    Article  CAS  Google Scholar 

  32. Przepiorka D, Devine S, Fay J, Uberti J, Wingard J. Practical considerations in the use of tacrolimus for allogeneic marrow transplantation. Bone Marrow Transplant. 1999;24(10):1053–6.

    Article  CAS  Google Scholar 

  33. Chu XY, Bleasby K, Yabut J, Cai X, Chan GH, Hafey MJ, et al. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J Pharmacol Exp Ther. 2007;321(2):673–83.

    Article  CAS  Google Scholar 

  34. Krishna R, Bergman A, Larson P, Cote J, Lasseter K, Dilzer S, et al. Effect of a single cyclosporine dose on the single-dose pharmacokinetics of sitagliptin (MK-0431), a dipeptidyl peptidase-4 inhibitor, in healthy male subjects. J Clin Pharmacol. 2007;47(2):165–74.

    Article  CAS  Google Scholar 

  35. Duncan N, Craddock C. Optimizing the use of cyclosporin in allogeneic stem cell transplantation. Bone Marrow Transplant. 2006;38(3):169–74.

    Article  CAS  Google Scholar 

  36. Beconi MG, Reed JR, Teffera Y, Xia YQ, Kochansky CJ, Liu DQ, et al. Disposition of the dipeptidyl peptidase 4 inhibitor sitagliptin in rats and dogs. Drug Metab Dispos. 2007;35(4):525–32.

    Article  CAS  Google Scholar 

  37. Durinx C, Lambeir AM, Bosmans E, Falmagne JB, Berghmans R, Haemers A, et al. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem. 2000;267(17):5608–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Disease and Therapeutic Response Modeling Program for the Clinical and Translational Sciences Institute (CTSI) at Indiana University, and David R. Jones for his useful comments on the bioanalytical assays. Analytical work was performed by the Clinical Pharmacology Analytical Core Laboratory, a core laboratory of the Indiana University Melvin and Bren Simon Cancer Center, supported by National Cancer Institute grant no. P30 CA082709.

Conflict of Interest Disclosure Statements

Nieves Vélez de Mendizábal, Shripad Chitnis and Robert Bies were supported by Eli Lilly and Company through the Indiana Clinical and Translational Sciences Institute (CTSI). Steven Messina-Graham was supported as a predoctoral student on under-represented minority grant no. GM079657 and subsequently on grant no. T32 (Hal Broxmeyer) from the US National Institutes of Health (NIH). Robert M. Strother has no conflicts of interest to declare. Hal Broxmeyer is a founder of Cord: Use Family Cord Blood Bank and serves on the medical scientific advisory board of the bank. Parts of these studies were supported by grants from the V Foundation for Cancer Research (Sherif Farag), and Public Service Multi-PI R01HL112669 from the NIH (Hal Broxmeyer and Sherif Farag). Robert Bies is the Director of the Disease and Therapeutic Response Modeling Program, funded through a gift from Eli Lilly & Co. to the Indiana CTSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nieves Vélez de Mendizábal.

Electronic Supplementary Material

Below is the link to the Electronic Supplementary Material.

Supplementary material 1 (DOCX 7376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vélez de Mendizábal, N., Strother, R.M., Farag, S.S. et al. Modelling the Sitagliptin Effect on Dipeptidyl Peptidase-4 Activity in Adults with Haematological Malignancies After Umbilical Cord Blood Haematopoietic Cell Transplantation. Clin Pharmacokinet 53, 247–259 (2014). https://doi.org/10.1007/s40262-013-0109-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0109-y

Keywords

Navigation