Skip to main content
Log in

Peptide-Based Vaccination and Induction of CD8+ T-Cell Responses Against Tumor Antigens in Breast Cancer

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Tumor-associated antigens (TAAs) have been identified in many malignant tumors. Within these TAAs are peptide sequences that bind major histocompatibility complex (MHC) class I and class II molecules recognized by T cells triggering antigen-specific CD8+ cytotoxic T-cell and CD4+ T-helper cell responses. Efforts to develop vaccines for breast cancer have been underway for more than 20 years, including peptide and whole inactivated tumor cell vaccines as well as antigen-loaded dendritic cell vaccines. The majority of vaccine trials have used peptides, including single-peptide and multiple-peptide formulations using either MHC class I and class II epitopes in oil-based emulsions alone or in combination with an adjuvant, such as granulocyte-macrophage colony-stimulating factor, and Toll-like receptor agonists. Preclinical research in vitro and in animal models has been aimed at improving vaccine efficacy by identifying more immunogenic peptides and combinations of peptides and adjuvants and cytokine adjuvants that induce stronger immune responses and prolong T-cell memory. Clinical studies investigating the therapeutic potential of active immunization using peptide vaccines has found no serious side effects. In this review, we examine TAA peptide-based vaccination regimens showing promise in breast cancer patients that are also being investigated in clinical trials of safety and efficacy. We also discuss the current limitations in the peptide vaccination field and areas for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

CEA:

Carcinoembryonic antigen

CTLs:

Cytotoxic T lymphocytes

DCs:

Dendritic cells

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HLA:

Human leukocyte antigen

hTERT:

Human telomerase reverse transcriptase

IFN-γ:

Gamma interferon

KLH:

Keyhole limpet hemocyanin

MHC:

Major histocompatibility complex

TAAs:

Tumor-associated antigens

TLRs:

Toll-like receptors

References

  1. Disis ML. Immune regulation of cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(29):4531–8.

    CAS  Google Scholar 

  2. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8(3):151–60.

    CAS  PubMed  Google Scholar 

  3. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(1):105–13.

    CAS  Google Scholar 

  4. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(15):1949–55.

    Google Scholar 

  5. Lee AH, Gillett CE, Ryder K, Fentiman IS, Miles DW, Millis RR. Different patterns of inflammation and prognosis in invasive carcinoma of the breast. Histopathology. 2006;48(6):692–701.

    CAS  PubMed  Google Scholar 

  6. Rakha EA, Aleskandarany M, El-Sayed ME, Blamey RW, Elston CW, Ellis IO, et al. The prognostic significance of inflammation and medullary histological type in invasive carcinoma of the breast. Eur J Cancer. 2009;45(10):1780–7.

    CAS  PubMed  Google Scholar 

  7. Murphy K, Travers P, Walport M. Immunobiology. New York and London: Garland Science; 2008.

    Google Scholar 

  8. Liew FY. T(H)1 and T(H)2 cells: a historical perspective. Nat Rev Immunol. 2002;2(1):55–60.

    CAS  PubMed  Google Scholar 

  9. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170(6):2081–95.

    CAS  PubMed  Google Scholar 

  10. Cresswell P, Bangia N, Dick T, Diedrich G. The nature of the MHC class I peptide loading complex. Immunol Rev. 1999;172:21–8.

    CAS  PubMed  Google Scholar 

  11. Sercarz EE, Maverakis E. Mhc-guided processing: binding of large antigen fragments. Nat Rev Immunol. 2003;3(8):621–9.

    CAS  PubMed  Google Scholar 

  12. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351(6324):290–6.

    CAS  PubMed  Google Scholar 

  13. Bjorkman PJ. MHC restriction in three dimensions: a view of T cell receptor/ligand interactions. Cell. 1997;89(2):167–70.

    CAS  PubMed  Google Scholar 

  14. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–9.

    CAS  PubMed  Google Scholar 

  15. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994;152(1):163–75.

    CAS  PubMed  Google Scholar 

  16. Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 2008;68(3):889–92.

    CAS  PubMed  Google Scholar 

  17. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72(5):1081–91.

    CAS  PubMed  Google Scholar 

  18. Robson NC, Hoves S, Maraskovsky E, Schnurr M. Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol. 2010;22(1):137–44.

    CAS  PubMed  Google Scholar 

  19. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    CAS  PubMed  Google Scholar 

  20. Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA. 2002;99(18):11790–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Chacon JA, Wu RC, Sukhumalchandra P, Molldrem JJ, Sarnaik A, Pilon-Thomas S, et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE. 2013;8(4):e60031.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Hernandez-Chacon JA, Li Y, Wu RC, Bernatchez C, Wang Y, Weber JS, et al. Costimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances antitumor effector function. J Immunother. 2011;34(3):236–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2(3):151–61.

    CAS  PubMed  Google Scholar 

  24. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193(2):233–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Bhardwaj N. Harnessing the immune system to treat cancer. J Clin Investig. 2007;117(5):1130–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001;1(3):220–8.

    CAS  PubMed  Google Scholar 

  28. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61(17):6451–8.

    CAS  PubMed  Google Scholar 

  29. Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8(5):351–60.

    CAS  PubMed  Google Scholar 

  30. Peoples GE, Holmes JP, Hueman MT, Mittendorf EA, Amin A, Khoo S, et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(3):797–803.

    CAS  Google Scholar 

  31. Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M, et al. A new era in anticancer peptide vaccines. Cancer. 2010;116(9):2071–80.

    CAS  PubMed  Google Scholar 

  32. Elliott RL, Head JF. Adjuvant breast cancer vaccine improves disease specific survival of breast cancer patients with depressed lymphocyte immunity. Surg Oncol. 2013;22(3):172–7.

    PubMed  Google Scholar 

  33. Chen G, Gupta R, Petrik S, Laiko M, Leatherman JM, Asquith JM, et al. A Feasibility Study of Cyclophosphamide, Trastuzumab, and an Allogeneic GM-CSF-Secreting Breast Tumor Vaccine for HER2+ Metastatic Breast Cancer. Cancer Immunol Res. 2014;2(10):949–61.

    CAS  PubMed  Google Scholar 

  34. Melief CJ. Cancer immunotherapy by dendritic cells. Immunity. 2008;29(3):372–83.

    CAS  PubMed  Google Scholar 

  35. Milani A, Sangiolo D, Montemurro F, Aglietta M, Valabrega G. Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol Off J Eur Soc Med Oncol. 2013;24(7):1740–8.

    CAS  Google Scholar 

  36. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood. 2000;96(9):3102–8.

    CAS  PubMed  Google Scholar 

  37. Curigliano G, Spitaleri G, Pietri E, Rescigno M, de Braud F, Cardillo A, et al. Breast cancer vaccines: a clinical reality or fairy tale? Ann Oncol Off J Eur Soc Med Oncol. 2006;17(5):750–62.

    CAS  Google Scholar 

  38. Tai LH, Auer R. Attacking Postoperative Metastases using Perioperative Oncolytic Viruses and Viral Vaccines. Frontiers in oncology. 2014;4:217.

    PubMed Central  PubMed  Google Scholar 

  39. de Gruijl TD, van den Eertwegh AJ, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother. 2008;57(10):1569–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Haas C, Schirrmacher V. Immunogenicity increase of autologous tumor cell vaccines by virus infection and attachment of bispecific antibodies. Cancer immunology, immunotherapy : CII. 1996;43(3):190–4.

    CAS  PubMed  Google Scholar 

  41. Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E, et al. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother. 2004;53(7):633–41.

    CAS  PubMed  Google Scholar 

  42. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New Engl J Med. 2010;363(5):411–22.

    CAS  PubMed  Google Scholar 

  43. Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 2007;67(4):1842–52.

    CAS  PubMed  Google Scholar 

  44. Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012;118(17):4354–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5(4):296–306.

    CAS  PubMed  Google Scholar 

  46. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 1999;59(1):56–8.

    CAS  PubMed  Google Scholar 

  47. Gholami S, Chen CH, Lou E, De Brot M, Fujisawa S, Chen NG, et al. Vaccinia virus GLV-1h153 is effective in treating and preventing metastatic triple-negative breast cancer. Ann Surg. 2012;256(3):437–45.

    PubMed  Google Scholar 

  48. Scholl S, Squiban P, Bizouarne N, Baudin M, Acres B, Von Mensdorff-Pouilly S, et al. Metastatic breast tumour regression following treatment by a gene-modified vaccinia virus expressing MUC1 and IL-2. J Biomed Biotechnol. 2003;2003(3):194–201.

    PubMed Central  PubMed  Google Scholar 

  49. Schlom J, Kantor J, Abrams S, Tsang KY, Panicali D, Hamilton JM. Strategies for the development of recombinant vaccines for the immunotherapy of breast cancer. Breast Cancer Res Treat. 1996;38(1):27–39.

    CAS  PubMed  Google Scholar 

  50. Rosenberg SA, Zhai Y, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, et al. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst. 1998;90(24):1894–900.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J (Sudbury, Mass). 2011;17(5):359–71.

    CAS  Google Scholar 

  52. Bellett AJ, Li P, David ET, Mackey EJ, Braithwaite AW, Cutt JR. Control functions of adenovirus transformation region E1A gene products in rat and human cells. Mol Cell Biol. 1985;5(8):1933–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Slingluff CL, Jr. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J (Sudbury, Mass). 2011;17(5):343–50.

  55. Klinman DM, Xie H, Little SF, Currie D, Ivins BE. CpG oligonucleotides improve the protective immune response induced by the anthrax vaccination of rhesus macaques. Vaccine. 2004;22(21–22):2881–6.

    CAS  PubMed  Google Scholar 

  56. Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci. 2013;104(1):15–21.

    CAS  PubMed  Google Scholar 

  57. Berinstein NL, Karkada M, Morse MA, Nemunaitis JJ, Chatta G, Kaufman H, et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med. 2012;10:156.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. LaCelle MG, Jensen SM, Fox BA. Partial CD4 depletion reduces regulatory T cells induced by multiple vaccinations and restores therapeutic efficacy. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(22):6881–90.

    CAS  Google Scholar 

  59. Leffers N, Lambeck AJ, Gooden MJ, Hoogeboom BN, Wolf R, Hamming IE, et al. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int J Cancer. 2009;125(9):2104–13.

    CAS  PubMed  Google Scholar 

  60. Eggermont AM. Immunostimulation versus immunosuppression after multiple vaccinations: the woes of therapeutic vaccine development. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(22):6745–7.

    CAS  Google Scholar 

  61. Faries MB, Hsueh EC, Ye X, Hoban M, Morton DL. Effect of granulocyte/macrophage colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(22):7029–35.

    CAS  Google Scholar 

  62. Beatson RE, Taylor-Papadimitriou J, Burchell JM. MUC1 immunotherapy. Immunotherapy. 2010;2(3):305–27.

    CAS  PubMed  Google Scholar 

  63. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(17):5323–37.

    Google Scholar 

  64. Emens LA, Jaffee EM. Cancer vaccines: an old idea comes of age. Cancer Biol Ther. 2003;2(4 Suppl 1):S161–8.

    PubMed  Google Scholar 

  65. Curcio C, Khan AS, Amici A, Spadaro M, Quaglino E, Cavallo F, et al. DNA immunization using constant-current electroporation affords long-term protection from autochthonous mammary carcinomas in cancer-prone transgenic mice. Cancer Gene Ther. 2008;15(2):108–14.

    CAS  PubMed  Google Scholar 

  66. Baxevanis CN, Sotiropoulou PA, Sotiriadou NN, Papamichail M. Immunobiology of HER-2/neu oncoprotein and its potential application in cancer immunotherapy. Cancer Immunol Immunother. 2004;53(3):166–75.

    CAS  PubMed  Google Scholar 

  67. Mamalaki A, Gritzapis AD, Kretsovali A, Belimezi M, Papamatheakis J, Perez SA, et al. In vitro and in vivo antitumor activity of a mouse CTL hybridoma expressing chimeric receptors bearing the single chain Fv from HER-2/neu- specific antibody and the gamma-chain from Fc(epsilon) RI. Cancer Immunol Immunother. 2003;52(8):513–22.

    CAS  PubMed  Google Scholar 

  68. Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 1994;54(1):16–20.

    CAS  PubMed  Google Scholar 

  69. Ward RL, Hawkins NJ, Coomber D, Disis ML. Antibody immunity to the HER-2/neu oncogenic protein in patients with colorectal cancer. Hum Immunol. 1999;60(6):510–5.

    CAS  PubMed  Google Scholar 

  70. Fisk B, Blevins TL, Wharton JT, Ioannides CG. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med. 1995;181(6):2109–17.

    CAS  PubMed  Google Scholar 

  71. Mittendorf EA, Clifton GT, Holmes JP, Clive KS, Patil R, Benavides LC, et al. Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer. 2012;118(10):2594–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Murray JL, Gillogly ME, Przepiorka D, Brewer H, Ibrahim NK, Booser DJ, et al. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2002;8(11):3407–18.

    CAS  Google Scholar 

  73. Zaks TZ, Rosenberg SA. Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res. 1998;58(21):4902–8.

    CAS  PubMed  Google Scholar 

  74. Knutson KL, Schiffman K, Cheever MA, Disis ML. Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p 369–377, results in short-lived peptide-specific immunity. Clin Cancer Res Off J Am Assoc Cancer Res. 2002;8(5):1014–8.

    CAS  Google Scholar 

  75. Holmes JP, Gates JD, Benavides LC, Hueman MT, Carmichael MG, Patil R, et al. Optimal dose and schedule of an HER-2/neu (E75) peptide vaccine to prevent breast cancer recurrence: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer. 2008;113(7):1666–75.

    CAS  PubMed  Google Scholar 

  76. Mittendorf EA, Holmes JP, Ponniah S, Peoples GE. The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother. 2008;57(10):1511–21.

    CAS  PubMed  Google Scholar 

  77. Mittendorf EA, Storrer CE, Foley RJ, Harris K, Jama Y, Shriver CD, et al. Evaluation of the HER2/neu-derived peptide GP2 for use in a peptide-based breast cancer vaccine trial. Cancer. 2006;106(11):2309–17.

    CAS  PubMed  Google Scholar 

  78. Benavides LC, Gates JD, Carmichael MG, Patil R, Holmes JP, Hueman MT, et al. The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(8):2895–904.

    CAS  Google Scholar 

  79. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(11):2624–32.

    CAS  Google Scholar 

  80. Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Investig. 2001;107(4):477–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Carmichael MG, Benavides LC, Holmes JP, Gates JD, Mittendorf EA, Ponniah S, et al. Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United States Military Cancer Institute Clinical Trials Group Study I-04. Cancer. 2010;116(2):292–301.

    CAS  PubMed  Google Scholar 

  82. Holmes JP, Benavides LC, Gates JD, Carmichael MG, Hueman MT, Mittendorf EA, et al. Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(20):3426–33.

    CAS  Google Scholar 

  83. Benavides LC, Sears AK, Gates JD, Clifton GT, Clive KS, Carmichael MG, et al. Comparison of different HER2/neu vaccines in adjuvant breast cancer trials: implications for dosing of peptide vaccines. Expert Rev Vaccines. 2011;10(2):201–10.

    CAS  PubMed  Google Scholar 

  84. Gates JD, Clifton GT, Benavides LC, Sears AK, Carmichael MG, Hueman MT, et al. Circulating regulatory T cells (CD4+ CD25+ FOXP3 +) decrease in breast cancer patients after vaccination with a modified MHC class II HER2/neu (AE37) peptide. Vaccine. 2010;28(47):7476–82.

    CAS  PubMed  Google Scholar 

  85. Rentzsch C, Kayser S, Stumm S, Watermann I, Walter S, Stevanovic S, et al. Evaluation of pre-existent immunity in patients with primary breast cancer: molecular and cellular assays to quantify antigen-specific T lymphocytes in peripheral blood mononuclear cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(12):4376–86.

    CAS  Google Scholar 

  86. Musselli C, Ragupathi G, Gilewski T, Panageas KS, Spinat Y, Livingston PO. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int J Cancer. 2002;97(5):660–7.

    CAS  PubMed  Google Scholar 

  87. Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 2006;7(6):599–604.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, et al. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci USA. 2001;98(3):1142–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–6.

    CAS  PubMed  Google Scholar 

  90. MacLean GD, Reddish MA, Koganty RR, Longenecker BM. Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J Immunother Emphas Tumor Immunol Off J Soc Biol Ther. 1996;19(1):59–68.

    CAS  Google Scholar 

  91. Reddish MA, MacLean GD, Poppema S, Berg A, Longenecker BM. Pre-immunotherapy serum CA27.29 (MUC-1) mucin level and CD69+ lymphocytes correlate with effects of Theratope sialyl-Tn-KLH cancer vaccine in active specific immunotherapy. Cancer Immun Immunother. 1996;42(5):303–9.

    CAS  Google Scholar 

  92. Hadden JW. The immunology and immunotherapy of breast cancer: an update. Int J Immunopharmacol. 1999;21(2):79–101.

    CAS  PubMed  Google Scholar 

  93. Zeichner SB. The failed Theratope vaccine: 10 years later. The Journal of the American Osteopathic Association. 2012;112(8):482–3.

    PubMed  Google Scholar 

  94. Miles D, Papazisis K. Rationale for the clinical development of STn-KLH (Theratope) and anti-MUC-1 vaccines in breast cancer. Clin Breast Cancer. 2003;3(Suppl 4):S134–8.

    PubMed  Google Scholar 

  95. MacLean GD, Miles DW, Rubens RD, Reddish MA, Longenecker BM. Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J Immunother Emphas Tumor Immunol Off J Soc Biol Ther. 1996;19(4):309–16.

    CAS  Google Scholar 

  96. Miles D, Roche H, Martin M, Perren TJ, Cameron DA, Glaspy J, et al. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16(8):1092–100.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Ibrahim NK, Murray JL, Zhou D, Mittendorf EA, Sample D, Tautchin M, et al. Survival advantage in patients with metastatic breast cancer receiving endocrine therapy plus sialyl Tn-KLH vaccine: post hoc analysis of a large randomized trial. J Cancer. 2013;4(7):577–84.

    PubMed Central  PubMed  Google Scholar 

  98. Karbach J, Gnjatic S, Bender A, Neumann A, Weidmann E, Yuan J, et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival. Int J Cancer. 2010;126(4):909–18.

    CAS  PubMed  Google Scholar 

  99. Neumann F, Wagner C, Kubuschok B, Stevanovic S, Rammensee HG, Pfreundschuh M. Identification of an antigenic peptide derived from the cancer-testis antigen NY-ESO-1 binding to a broad range of HLA-DR subtypes. Cancer Immunol Immunother. 2004;53(7):589–99.

    CAS  PubMed  Google Scholar 

  100. Theurillat JP, Ingold F, Frei C, Zippelius A, Varga Z, Seifert B, et al. NY-ESO-1 protein expression in primary breast carcinoma and metastases: correlation with CD8+ T-cell and CD79a+ plasmacytic/B-cell infiltration. Int J Cancer. 2007;120(11):2411–7.

    CAS  PubMed  Google Scholar 

  101. Wang HY, Wang RF. Regulatory T cells and cancer. Curr Opin Immunol. 2007;19(2):217–23.

    CAS  PubMed  Google Scholar 

  102. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, et al. Telomerase maintains telomere structure in normal human cells. Cell. 2003;114(2):241–53.

    CAS  PubMed  Google Scholar 

  103. Filaci G, Fravega M, Setti M, Traverso P, Millo E, Fenoglio D, et al. Frequency of telomerase-specific CD8+ T lymphocytes in patients with cancer. Blood. 2006;107(4):1505–12.

    CAS  PubMed  Google Scholar 

  104. Gannage M, Abel M, Michallet AS, Delluc S, Lambert M, Giraudier S, et al. Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J Immunol. 2005;174(12):8210–8.

    CAS  PubMed  Google Scholar 

  105. Domchek SM, Recio A, Mick R, Clark CE, Carpenter EL, Fox KR, et al. Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance. Cancer Res. 2007;67(21):10546–55.

    CAS  PubMed  Google Scholar 

  106. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3(8):917–21.

    CAS  PubMed  Google Scholar 

  107. Tsuruma T, Iwayama Y, Ohmura T, Katsuramaki T, Hata F, Furuhata T, et al. Clinical and immunological evaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer. J Transl Med. 2008;6:24.

    PubMed Central  PubMed  Google Scholar 

  108. Becker JC, Andersen MH, Hofmeister-Muller V, Wobser M, Frey L, Sandig C, et al. Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma. Cancer Immunol Immunother. 2012;61(11):2091–103.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Kinugasa T, Kuroki M, Yamanaka T, Matsuo Y, Oikawa S, Nakazato H, et al. Non-proteolytic release of carcinoembryonic antigen from normal human colonic epithelial cells cultured in collagen gel. Int J Cancer. 1994;58(1):102–7.

    CAS  PubMed  Google Scholar 

  110. Bhattacharya-Chatterjee M, Saha A, Foon KA, Chatterjee SK. In: Coligan JE et al, editors. Carcinoembryonic antigen transgenic mouse models for immunotherapy and development of cancer vaccines. Current protocols in immunology. Chapter 20:Unit 20.8;2008.

  111. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, et al. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol. 1998;59(1):1–14.

    CAS  PubMed  Google Scholar 

  112. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst. 1995;87(13):982–90.

    CAS  PubMed  Google Scholar 

  113. Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G, et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc Natl Acad Sci USA. 2005;102(31):11005–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Jager D, Unkelbach M, Frei C, Bert F, Scanlan MJ, Jager E, et al. Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum. Cancer immunity. 2002;2:5.

    PubMed  Google Scholar 

  115. Jager D, Karbach J, Pauligk C, Seil I, Frei C, Chen YT, et al. Humoral and cellular immune responses against the breast cancer antigen NY-BR-1: definition of two HLA-A2 restricted peptide epitopes. Cancer Immun. 2005;5:11.

    PubMed  Google Scholar 

  116. Jager D, Taverna C, Zippelius A, Knuth A. Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol Immunother. 2004;53(3):144–7.

    PubMed  Google Scholar 

  117. Jager D, Stockert E, Gure AO, Scanlan MJ, Karbach J, Jager E, et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. 2001;61(5):2055–61.

    CAS  PubMed  Google Scholar 

  118. Wang W, Epler J, Salazar LG, Riddell SR. Recognition of breast cancer cells by CD8+ cytotoxic T-cell clones specific for NY-BR-1. Cancer Res. 2006;66(13):6826–33.

    CAS  PubMed  Google Scholar 

  119. Morita S, Oka Y, Tsuboi A, Kawakami M, Maruno M, Izumoto S, et al. A phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn J Clin Oncol. 2006;36(4):231–6.

    PubMed  Google Scholar 

  120. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101(38):13885–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann New York Acad Sci. 2000;910:121–37; discussion 37–9.

  122. Chang F, Syrjanen S, Syrjanen K. Implications of the p53 tumor-suppressor gene in clinical oncology. J Clin Oncol Off J Am Soc Clin Oncol. 1995;13(4):1009–22.

    CAS  Google Scholar 

  123. Petersen TR, Buus S, Brunak S, Nissen MH, Sherman LA, Claesson MH. Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity. Scand J Immunol. 2001;53(4):357–64.

    CAS  PubMed  Google Scholar 

  124. Chikamatsu K, Nakano K, Storkus WJ, Appella E, Lotze MT, Whiteside TL, et al. Generation of anti-p53 cytotoxic T lymphocytes from human peripheral blood using autologous dendritic cells. Clin Cancer Res Off J Am Assoc Cancer Res. 1999;5(6):1281–8.

    CAS  Google Scholar 

  125. Sung MH, Simon R. Candidate epitope identification using peptide property models: application to cancer immunotherapy. Methods (San Diego, Calif). 2004;34(4):460–7.

  126. Svane IM, Pedersen AE, Nikolajsen K, Zocca MB. Alterations in p53-specific T cells and other lymphocyte subsets in breast cancer patients during vaccination with p53-peptide loaded dendritic cells and low-dose interleukin-2. Vaccine. 2008;26(36):4716–24.

    CAS  PubMed  Google Scholar 

  127. Svane IM, Pedersen AE, Johansen JS, Johnsen HE, Nielsen D, Kamby C, et al. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunother. 2007;56(9):1485–99.

    CAS  PubMed  Google Scholar 

  128. Pedersen AE, Stryhn A, Justesen S, Harndahl M, Rasmussen S, Donskov F, et al. Wildtype p53-specific antibody and T-cell responses in cancer patients. J Immunother. 2011;34(9):629–40.

    CAS  PubMed  Google Scholar 

  129. Knutson KL, Disis ML. Augmenting T helper cell immunity in cancer. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(4):365–71.

    CAS  PubMed  Google Scholar 

  130. Zeng G, Li Y, El-Gamil M, Sidney J, Sette A, Wang RF, et al. Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res. 2002;62(13):3630–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol. 2008;38(4):1033–42.

    CAS  PubMed  Google Scholar 

  132. Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA. 1996;93(15):7855–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Toes RE, Blom RJ, Offringa R, Kast WM, Melief CJ. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J Immunol. 1996;156(10):3911–8.

    CAS  PubMed  Google Scholar 

  134. Mittendorf EA. HER-2/neu peptide breast cancer vaccines: current status and future directions. Breast Dis A Year Book® Q. 2007;17(4):318–20.

  135. Mittendorf EA, Alatrash G, Xiao H, Clifton GT, Murray JL, Peoples GE. Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials. Expert Rev Vaccines. 2011;10(6):755–74.

    CAS  PubMed  Google Scholar 

  136. Yu B, Zhang Y, Zhan Y, Zha X, Wu Y, Zhang X, et al. Co-expression of herpes simplex virus thymidine kinase and Escherichia coli nitroreductase by an hTERT-driven adenovirus vector in breast cancer cells results in additive anti-tumor effects. Oncol Rep. 2011;26(1):255–64.

    PubMed  Google Scholar 

  137. Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E, et al. Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther J Am Soc Gene Ther. 2010;18(8):1430–9.

    CAS  Google Scholar 

  138. Sanderson K, Scotland R, Lee P, Liu D, Groshen S, Snively J, et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(4):741–50.

    CAS  Google Scholar 

  139. Iversen TZ, Andersen MH, Svane IM. The targeting of indole-amine 2,3 dioxygenase-mediated immune escape in cancer. Basic Clin Pharmacol Toxicol. 2014 [Epub ahead of print].

  140. Cohn A, Lahn MM, Williams KE, Cleverly AL, Pitou C, Kadam SK, et al. A phase I dose-escalation study to a predefined dose of a transforming growth factor-beta1 monoclonal antibody (TbetaM1) in patients with metastatic cancer. Int J Oncol. 2014;45(6):2221–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New Engl J Med. 2011;364(26):2507–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Comin-Anduix B, Chodon T, Sazegar H, Matsunaga D, Mock S, Jalil J, et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(24):6040–8.

    CAS  Google Scholar 

  144. Okuno K, Sugiura F, Inoue K, Sukegawa Y. Clinical trial of a 7-Peptide cocktail vaccine with oral chemotherapy for patients with metastatic colorectal cancer. Anticancer Res. 2014;34(6):3045–52.

    CAS  PubMed  Google Scholar 

  145. Andersen MH, Junker N, Ellebaek E, Svane IM. Thor Straten P. Therapeutic cancer vaccines in combination with conventional therapy. Journal of biomedicine & biotechnology. 2010;2010:237623.

    Google Scholar 

  146. Leisegang M, Wilde S, Spranger S, Milosevic S, Frankenberger B, Uckert W, et al. MHC-restricted fratricide of human lymphocytes expressing survivin-specific transgenic T cell receptors. J Clin Investig. 2010;120(11):3869–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Lu YC, Yao X, Li YF, El-Gamil M, Dudley ME, Yang JC, et al. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J Immunol. 2013;190(12):6034–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–5.

    CAS  PubMed  Google Scholar 

  149. Rammensee HG, Singh-Jasuja H. HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev Vaccines. 2013;12(10):1211–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Zhao J, Rycaj K, Geng S, Li M, Plummer JB, Yin B, et al. Expression of Human Endogenous Retrovirus Type K Envelope Protein is a Novel Candidate Prognostic Marker for Human Breast Cancer. Genes Cancer. 2011;2(9):914–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    CAS  PubMed  Google Scholar 

  152. Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL. Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene. 2003;22(10):1528–35.

    CAS  PubMed  Google Scholar 

  153. Wang-Johanning F, Radvanyi L, Rycaj K, Plummer JB, Yan P, Sastry KJ, et al. Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res. 2008;68(14):5869–77.

    CAS  PubMed  Google Scholar 

  154. Mittendorf EA, Gurney JM, Storrer CE, Shriver CD, Ponniah S, Peoples GE. Vaccination with a HER2/neu peptide induces intra- and inter-antigenic epitope spreading in patients with early stage breast cancer. Surgery. 2006;139(3):407–18.

    PubMed  Google Scholar 

  155. Sears AK, Perez SA, Clifton GT, Benavides LC, Gates JD, Clive KS, et al. AE37: a novel T-cell-eliciting vaccine for breast cancer. Expert Opin Biol Ther. 2011;11(11):1543–50.

    CAS  PubMed  Google Scholar 

  156. Clive KS, Tyler JA, Clifton GT, Holmes JP, Ponniah S, Peoples GE, et al. The GP2 peptide: a HER2/neu-based breast cancer vaccine. J Surg Oncol. 2012;105(5):452–8.

    CAS  PubMed  Google Scholar 

  157. Knutson KL, Disis ML. Expansion of HER2/neu-specific T cells ex vivo following immunization with a HER2/neu peptide-based vaccine. Clin Breast Cancer. 2001;2(1):73–9.

    CAS  PubMed  Google Scholar 

  158. Peoples GE, Gurney JM, Hueman MT, Woll MM, Ryan GB, Storrer CE, et al. Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(30):7536–45.

    CAS  Google Scholar 

  159. Gilewski T, Adluri S, Ragupathi G, Zhang S, Yao TJ, Panageas K, et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin Cancer Res Off J Am Assoc Cancer Res. 2000;6(5):1693–701.

    CAS  Google Scholar 

  160. Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, et al. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer. 2011;128(8):1860–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Naoto Ueno (Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA) for critical reading of the manuscript and comments. This study was supported by a 2011 My Oncology Dream Award to Michiko Harao supported by the Japanese Cancer Society and the University of Texas, MD Anderson Global Academic Program.

Conflict of interest

The authors have no conflicts of interest regarding the subject matter of this review.

Author Contributions

Conception and design: MH, EM, LR. Manuscript writing: MH, LR. Responsible for overall content: MH and LR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo G. Radvanyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harao, M., Mittendorf, E.A. & Radvanyi, L.G. Peptide-Based Vaccination and Induction of CD8+ T-Cell Responses Against Tumor Antigens in Breast Cancer. BioDrugs 29, 15–30 (2015). https://doi.org/10.1007/s40259-014-0114-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-014-0114-1

Keywords

Navigation