Skip to main content

Advertisement

Log in

Improving Catalytic Stability and Coke Resistance of Ni/Al2O3 Catalysts with Ce Promoter for Relatively Low Temperature Dry Reforming of Methane Reaction

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A series of Ni catalysts supported on alumina with different Ce contents(1.0%–6.0%, mass fraction) was prepared by the impregnation method and used for dry reforming of methane(DRM) at a relatively low temperature of 650 °C. The promotion effect of Ce with different loading amounts on the physicochemical properties of the catalysts was systematically characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), N2 adsorption-desorption, thermo elemental IRIS Intrepid inductively coupled plasma atomic emission spectrometer (ICP-AES), UV-visible diffuse reflectance spectroscopy(UV-Vis DRS), Fourier transformation infrared(FTIR) spectra, H2-temperature programmed reduction(H2-TPR) analysis, H2-temperature programmed desorption(H2-TPD), and The X-ray photoelectron spectroscopy(XPS) techniques. The results indicate that all the catalysts mainly exist in the NiAl2O4 phase after being calcined at 750 °C with small Ni particle sizes due to the strong metal-support interaction derived from the reduction of the NiAl2O4 phase. The Ce-promoted catalysts show better catalytic performance as well as the resistance against sintering of Ni particles and deposition of carbon compared to the Ni/Al2O3 catalyst. The Ni-6Ce/Al2O3 exhibits the best catalytic stability and coke resistance among the four catalysts studied, which is due to its small Ni nanoparticles sizes, excellent reducibility as well as high amount of active oxygen species. In a 400 h stability test for DRM reaction at 650 °C, Ni-6Ce/Al2O3 exhibits less coke deposition and small growth of Ni nanoparticles. This work provides a simple way to preparing the Ni-Ce/Al2O3 catalyst with enhanced catalytic performance in DRM. The Ni-6Ce/Al2O3 catalyst has great potential for industrial application due to its anti-sintering ability and resistance to carbon deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. York R., Nat. Clim. Change, 2012, 2, 441

    Article  Google Scholar 

  2. Hestres L. E., Hopke J. E., Environ. Polit., 2019, 29, 371

    Article  Google Scholar 

  3. Skovgaard J., van Asselt H., Wiley Interdiscip. Rev. Clim. Change, 2019, 10, e581

    Article  Google Scholar 

  4. Midilli A., Dincer I., Int. J. Hydrogen Energy, 2008, 33, 4209

    Article  CAS  Google Scholar 

  5. Lee B., Kim H., Lee H., Byun M., Won W., Lim H., Renewable Sustainable Energy Rev., 2020, 133, 110056

    Article  CAS  Google Scholar 

  6. Wang S., Xu M., Peng T., Zhang C., Li T., Hussain I., Wang J., Tan B., Nat. Commun., 2019, 10, 676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zickfeld K., MacDougall A. H., Matthews H. D., Environ. Res. Lett., 2016, 11, 055006

    Article  CAS  Google Scholar 

  8. Liechty Z., Santos-Medellin C., Edwards J., Nguyen B., Mikhail D., Eason S., Phillips G., Sundaresan V., mSystems, 2020, 5, e00897

    Article  PubMed  PubMed Central  Google Scholar 

  9. Keppler F., Hamilton J. T., Brass M., Rockmann T., Nature, 2006, 439, 187

    Article  CAS  PubMed  Google Scholar 

  10. Shindell D., Kuylenstierna J. C., Vignati E., van Dingenen R., Amann M., Klimont Z., Anenberg S. C., Muller N., Janssens-Maenhout G., Raes F., Schwartz J., Faluvegi G., Pozzoli L., Kupiainen K., Hoglund-Isaksson L., Emberson L., Streets D., Ramanathan V., Hicks K., Oanh N. T., Milly G., Williams M., Demkine V., Fowler D., Science, 2012, 335, 183

    Article  CAS  PubMed  Google Scholar 

  11. Hu D., Ordomsky V. V., Khodakov A. Y., Appl. Catal. B: Environ., 2021, 286, 119913

    Article  CAS  Google Scholar 

  12. Movasati A., Alavi S. M., Mazloom G., Int. J. Hydrogen Energy, 2017, 42, 16436

    Article  CAS  Google Scholar 

  13. Zhou L., Li L., Wei N., Li J., Basset J.-M., ChemCatChem., 2015, 7, 2508

    Article  CAS  Google Scholar 

  14. Aghamohammadi S., Haghighi M., Maleki M., Rahemi N., Mol. Catal., 2017, 431, 39

    Article  CAS  Google Scholar 

  15. Ordomsky V. V., Legras B., Cheng K., Paul S., Khodakov A. Y., Catal. Sci. Technol., 2015, 5, 1433

    Article  CAS  Google Scholar 

  16. Khodakov A. Y., Chu W., Fongarland P., Chem. Rev., 2007, 107, 1692

    Article  CAS  PubMed  Google Scholar 

  17. Hibbitts D. D., Loveless B. T., Neurock M., Iglesia E., Angew. Chem. Int. Ed., 2013, 52, 12273

    Article  CAS  Google Scholar 

  18. Abdullah B., Abd Ghani N. A., Vo, D.-V. N., J. Cleaner Prod., 2017, 162, 170

    Article  CAS  Google Scholar 

  19. Pakhare D., Spivey J., Chem. Soc. Rev., 2014, 43, 7813

    Article  CAS  PubMed  Google Scholar 

  20. Aramouni N. A. K., Touma J. G., Tarboush B. A., Zeaiter J., Ahmad M. N., Renewable Sustainable Energy Rev., 2018, 82, 2570

    Article  CAS  Google Scholar 

  21. Wang Y., Yao L., Wang S., Mao D., Hu C., Fuel Process. Technol., 2018, 169, 199

    Article  CAS  Google Scholar 

  22. Xie T., Zhao X., Zhang J., Shi L., Zhang D., Int. J. Hydrogen Energy, 2015, 40, 9685

    Article  CAS  Google Scholar 

  23. Li X., Li D., Tian H., Zeng L., Zhao Z.-J., Gong J. Appl. Catal. B: Environ., 2017, 202, 683

    Article  CAS  Google Scholar 

  24. Meshkani F., Rezaei M., Andache M., J. Ind. Eng. Chem., 2014, 20, 1251

    Article  CAS  Google Scholar 

  25. Pizzolitto C., Pupulin E., Menegazzo F., Ghedini E., di Michele A., Mattarelli M., Cruciani G., Signoretto M., Int. J. Hydrogen Energy, 2019, 44, 28065

    Article  CAS  Google Scholar 

  26. Kamonsuangkasem K., Therdthianwong S., Therdthianwong A., Thammajak N., Appl. Catal. B: Environ., 2017, 218, 650

    Article  CAS  Google Scholar 

  27. Jiao Y., Sun D., Zhang J., Du Y., Kang J., Li C., Lu J., Wang J., Chen Y., J. Anal. Appl. Pyrolysis, 2016, 120, 238

    Article  CAS  Google Scholar 

  28. Wang J., Dong L., Hu Y., Zheng G., Hu Z., Chen Y., J. Solid State Chem., 2001, 157, 274

    Article  CAS  Google Scholar 

  29. Li J., Ren Y., Yue B., He H., Chin. J. Catal., 2017, 38, 1166

    Article  CAS  Google Scholar 

  30. Jiménez-González C., Boukha Z., de Rivas B., Delgado J. J., Cauqui M. Á., González-Velasco J. R., Gutiérrez-Ortiz J. I., López-Fonseca R., Appl. Catal. A: Gen., 2013, 466, 9

    Article  CAS  Google Scholar 

  31. He L., Ren Y., Yue B., Tsang S. C. E., He H., Processes, 2021, 9, 706

    Article  CAS  Google Scholar 

  32. Rahbar Shamskar F., Meshkani F., Rezaei M., J. CO2Util., 2017, 22, 124

    Article  CAS  Google Scholar 

  33. Hassani Rad S. J., Haghighi M., Alizadeh Eslami A., Rahmani F., Rahemi N., Int. J. Hydrogen Energy, 2016, 41, 5335

    Article  CAS  Google Scholar 

  34. Daza C. E., Gallego J., Mondragón F., Moreno S., Molina R., Fuel, 2010, 89, 592

    Article  CAS  Google Scholar 

  35. Abou Rached J., Cesario M. R., Estephane J., Tidahy H. L., Gennequin C., Aouad S., Aboukaïs A., Abi-Aad E., J. Environ. Chem. Eng., 2018, 6, 4743

    Article  CAS  Google Scholar 

  36. Jiao Y., Wang J., Zhu Q., Li X., Chen Y., Energy & Fuels, 2014, 28, 5382

    Article  CAS  Google Scholar 

  37. Sepehri S., Rezaei M., Int. J. Hydrogen Energy, 2017, 42, 11130

    Article  CAS  Google Scholar 

  38. Fu Y., Wu Y., Cai W., Yue B., He H., Sci. China Chem., 2014, 58, 148

    Article  CAS  Google Scholar 

  39. Bortolozzi J. P., Weiss T., Gutierrez L. B., Ulla M. A., Chem. Eng. J., 2014, 246, 343

    Article  CAS  Google Scholar 

  40. Li Y., Wu L., Wang Y., Ke P., Xu J., Guan B., J. Water Process Eng., 2020, 36, 101313

    Article  Google Scholar 

  41. Yan X., Hu T., Liu P., Li S., Zhao B., Zhang Q., Jiao W., Chen S., Wang P., Lu J., Fan L., Deng X., Pan Y.-X., Appl. Catal. B: Environ., 2019, 246, 221

    Article  CAS  Google Scholar 

  42. Wu Z.-W., Li X., Qin Y.-H., Deng L., Wang C.-W., Jiang X., Int. J. Hydrogen Energy, 2020, 45, 15263

    Article  CAS  Google Scholar 

  43. Yang X., Da J., Yu H., Wang H., Fuel, 2016, 179, 353

    Article  CAS  Google Scholar 

  44. Shokrollahi Yancheshmeh M., Alizadeh Sahraei O., Aissaoui M., Iliuta M. C., Appl. Catal. B: Environ, 2020, 265, 118535

    Article  CAS  Google Scholar 

  45. Yang R., Li X., Wu J., Zhang X., Xi X., Zhang Z., Catal. Lett., 2009, 132, 275

    Article  CAS  Google Scholar 

  46. Sengupta S., Ray K., Deo G., Int. J. Hydrogen Energy, 2014, 39, 11462

    Article  CAS  Google Scholar 

  47. Heracleous E., Lee A., Wilson K., Lemonidou A., J. Catal., 2005, 231, 159

    Article  CAS  Google Scholar 

  48. Bensalem A., Muller J. C., Bozonverduraz F., J. Chem. Soc., Faraday Trans., 1992, 88, 153

    Article  CAS  Google Scholar 

  49. Qin L., Niu X., J. Mater. Sci.: Mater. Electron., 2016, 27, 12233

    CAS  Google Scholar 

  50. Liu Y., Yang Z., RSC Adv., 2016, 6, 68584

    Article  CAS  Google Scholar 

  51. Meyer F., Hempelmann R., Mathur S., Veith M., J. Mater. Chem., 1999, 9, 1755

    Article  CAS  Google Scholar 

  52. Ryczkowski J., Catal. Today, 2001, 68, 263

    Article  CAS  Google Scholar 

  53. Ragupathi C., Vijaya J. J., Surendhar P., Kennedy L., J. Polyhedron, 2014, 72, 1

    Article  CAS  Google Scholar 

  54. Li C. P., Proctor A., Hercules D. M., Appl. Spectrosc., 1984, 38, 880

    Article  CAS  Google Scholar 

  55. Zhong M., Zhai J., Xu Y., Jin L., Ye Y., Hu H., Ma F., Fan X., Fuel, 2020, 263, 116763

    Article  CAS  Google Scholar 

  56. Al-Fatesh A. S., Arafat Y., Kasim S. O., Ibrahim A. A., Abasaeed A. E., Fakeeha A. H., Appl. Catal. B: Environ., 2021, 280, 119445

    Article  CAS  Google Scholar 

  57. Cai W.-J., Qian L.-P., Yue B., He H.-Y., Chin. Chem. Lett., 2014, 25, 1411

    Article  CAS  Google Scholar 

  58. Li K., Pei C., Li X., Chen S., Zhang X., Liu R., Gong J., Appl. Catal. B: Environ., 2020, 264, 118448

    Article  CAS  Google Scholar 

  59. Horváth A., Németh M., Beck A., Maróti B., Sáfrán G., Pantaleo G., Liotta L. F., Venezia A. M., La Parola V., Appl. Catal. A: Gen., 2021, 621, 118174

    Article  CAS  Google Scholar 

  60. Wang F., Zhang J.-C., Li W.-Z., Chen B.-H., J. Energy Chem., 2019, 39, 198

    Article  Google Scholar 

  61. Wang C., Jie X., Qiu Y., Zhao Y., Al-Megren H. A., Alshihri S., Edwards P. P., Xiao T., Appl. Catal. B: Environ., 2019, 259, 118019

    Article  CAS  Google Scholar 

  62. Zhang Q., Feng X., Liu J., Zhao L., Song X., Zhang P., Gao L., Int. J. Hydrogen Energy, 2018, 43, 11056

    Article  CAS  Google Scholar 

  63. Koo K. Y., Lee S.-H., Jung U. H., Roh H.-S., Yoon W. L., Fuel Process Technol., 2014, 119, 151

    Article  CAS  Google Scholar 

  64. Liu D., Quek X. Y., Cheo W. N. E., Lau R., Borgna A., Yang Y., J. Catal., 2009, 266, 380

    Article  CAS  Google Scholar 

  65. Tuinstra F., Koenig J. L., J. Chem. Phys., 1970, 53, 1126

    Article  CAS  Google Scholar 

  66. Wang P., Tanabe E., Ito K., Jia J., Morioka H., Shishido T., Takehira K., Appl. Catal. A: Gen., 2002, 231, 35

    Article  CAS  Google Scholar 

  67. Darmstadt H., Summchen L., Ting J. M., Roland U., Kaliaguine S., Roy C., Carbon, 1997, 35, 1581

    Article  CAS  Google Scholar 

  68. Zhang L., Wang X., Chen C., Zou X., Shang X., Ding W., Lu X., RSC Adv., 2017, 7, 33143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.22088101) and the fund of China Petroleum&Chemical Corporation (No.420068-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Yue or Heyong He.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information

40242_2021_1281_MOESM1_ESM.pdf

Improved catalytic stability and coke resistance of Ni/Al2O3 catalysts with Ce promoter for relatively low temperature dry reforming of methane reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Chen, X., Ren, Y. et al. Improving Catalytic Stability and Coke Resistance of Ni/Al2O3 Catalysts with Ce Promoter for Relatively Low Temperature Dry Reforming of Methane Reaction. Chem. Res. Chin. Univ. 38, 1032–1040 (2022). https://doi.org/10.1007/s40242-021-1281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1281-5

Keywords

Navigation