Skip to main content
Log in

Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

To fabricate high-density cobalt-based catalysts, we first synthesized SiO2/C composites via a hydrothermal method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports then reacted with cobalt acetylacetonate and N,N-dimethylformamide(DMF) under hydrothermal conditions to prepare SiO2/Co and C/Co nanocomposite catalysts. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma mass spectrometry(ICP), energy dispersive X-ray fluoresence spectrometer(EDX), and nitrogen adsorption. It was found that hexagonal cobalt nanocrystals were successfully integrated with the mesoporous silica or carbon nanotube supports. SEM and TEM results show that SiO2/Co composites with a hollow/mesoporous sphere structure and C/Co composites with a tubular structure have been successfully synthesized. Both composite samples show superparamagnetism exhibiting an S-type hysteresis loop, which originated from the cobalt nanoparticles in the samples. Nitrogen adsorption/desorption curves suggest that the SiO2 and C supports have well-developed pore structures and large specific surface areas, and the loading and good dispersity of cobalt nanoparticles on the supports were proven by ICP and EDX. Moreover, the samples exhibited good and stable catalytic activity, demonstrating that the two composites are suitable catalysts for Fischer-Tropsch CO2 hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce L., Takos J., Turney T. W., ACS Symposium Series, 1990, 437, 129

    CAS  Google Scholar 

  2. Rodriguez Vallejo D. F., de Klerk A., Energy & Fuels, 2013, 27(6), 3137

    Article  CAS  Google Scholar 

  3. Fischer N., Clapham B., Feltes T., Claeys M., ACS Catalysis, 2015, 5(1), 113

    Article  CAS  Google Scholar 

  4. de Klerk A., de Vaal P. L., Industrial & Engineering Chemistry Research., 2008, 47(18), 6870

    Article  CAS  Google Scholar 

  5. Dai Y. Y., Yu F., Li Z. J., An Y. L., Lin T. J., Yang Y. Z., Zhong L. S., Wang H., Sun Y. H., Chinese Journal of Chemistry, 2017, 35(6), 918

    Article  CAS  Google Scholar 

  6. Kibby C., Jothimurugesan K., Das T., Lacheen H. S., Rea T., Saxton R. J., Catalysis Today, 2013, 215, 131

    Article  CAS  Google Scholar 

  7. Arsalanfar M., Mirzaei A. A., Bozorgzadeh H. R., Journal of Industrial and Engineering Chemistry, 2013, 19(2), 478

    Article  CAS  Google Scholar 

  8. Khusnutdinova J. R., Garg J. A., Milstein D., ACS Catalysis, 2015, 5(4), 2416

    Article  CAS  Google Scholar 

  9. Xiang Y. Z., Chitry V., Liddicoat P., Felfer P., Cairney J., Ringer S., Kruse N., Journal of the American Chemical Society, 2013, 135(19), 7114

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y., Choi S., Thompson L. T., ACS Catalysis, 2015, 5(3), 1717

    Article  CAS  Google Scholar 

  11. Yang X. F., Kattel S., Senanayake S. D., Boscoboinik J. A., Nie X. W., Graciani J., Rodriguez J. A., Liu P., Stacchiola D. J., Chen J. G. G., J. Am. Chem. Soc., 2015, 137(32), 10104

    Article  CAS  PubMed  Google Scholar 

  12. Zhang P., Tong J. L., Huang K., ACS Sustainable Chemistry & Engineering, 2016, 4(12), 7056

    Article  CAS  Google Scholar 

  13. Ma D. W., Niu S. T., Zhao J. L., Jiang X., Jiang Y. W., Zhang X. J., Sun T. M., Chinese Journal of Chemistry, 2017, 35(11), 1661

    Article  CAS  Google Scholar 

  14. Wang C. Z., Zhang Y., Wang Y. Z., Zhao Y. X., Chinese Journal of Chemistry, 2017, 35(1), 113

    Article  CAS  Google Scholar 

  15. Chang F. W., Hsiao T. J., Shih J. D., Industrial & Engineering Chemistry Research, 1998, 37(10), 3838

    Article  CAS  Google Scholar 

  16. Peng G. W., Sibener S. J., Schatz G. C., Ceyer S. T., Mavrikakis M., Journal of Physical Chemistry C, 2012, 116(4), 3001

    Article  CAS  Google Scholar 

  17. Hutschka F., Dedieu A., Eichberger M., Fornika. R., Leitner W., J. Am. Chem. Soc., 1997, 119(19), 4432

    Article  CAS  Google Scholar 

  18. Theleritis D., Souentie S., Siokou A., Katsaounis A., Vayenas C. G., ACS Catalysis, 2012, 2(5), 770

    Article  CAS  Google Scholar 

  19. Fong H., Peters J. C., Inorganic Chemistry, 2015, 54(11), 5124

    Article  CAS  PubMed  Google Scholar 

  20. Yu H. F., Liao P. Q., Chem. Res. Chinese Universities, 2016, 32(3), 390

    Article  CAS  Google Scholar 

  21. Spentzos A. Z., Barnes C. L., Bernskoetter W. H., Inorganic Chemistry, 2016, 55(16), 8225

    Article  CAS  PubMed  Google Scholar 

  22. Liu H., Yang S. Z., Wang F., Bai C. X., Hu Y. M., Zhang X. Q., Chin. J. Polym. Sci., 2016, 34(9), 1060

    Article  CAS  Google Scholar 

  23. Su B., Cao Z. C., Shi Z. J., Accounts of Chemical Research, 2015, 48(3), 886

    Article  CAS  PubMed  Google Scholar 

  24. Melaet G., Ralston W. T., Li C. S., Alayoglu S., An K. J., Musselwhite N., Kalkan B., Somorjai G. A., J. Am. Chem. Soc., 2014, 136(6), 2260

    Article  CAS  PubMed  Google Scholar 

  25. Jeletic M. S., Helm M. L., Hulley E. B., Mock M. T., Appel A. M., Linehan J. C., ACS Catalysis, 2014, 4(10), 3755

    Article  CAS  Google Scholar 

  26. Grandjean D., Pelipenko V., Batyrev E. D., van den Heuvel J. C., Khassin A. A., Yurieva T. M., Weckhuysen B. M., Journal of Physical Chemistry C, 2011, 115(41), 20175

    CAS  Google Scholar 

  27. Xu S. C., Walter E. D., Zhao Z. C., Hu M. Y., Han X. W., Hu J. Z., Bao X. H., Journal of Physical Chemistry C., 2015, 119(36), 21219

    Article  CAS  Google Scholar 

  28. Kwak J. H., Kovarik L., Szanyi J., ACS Catalysis, 2013, 3(11), 2449

    Article  CAS  Google Scholar 

  29. Lwin S., Wachs I. E., ACS Catalysis, 2016, 6(1), 272

    Article  CAS  Google Scholar 

  30. Hu H., Cai S. X., Li H. R., Huang L., Shi L. Y., Zhang D. S., ACS Catalysis, 2015, 5(10), 6069

    Article  CAS  Google Scholar 

  31. Lu C. Q., Liu J. H., Jin C., Guo Y., Wang G. C., Chem. Res. Chinese Universities, 2017, 33(3), 406

    Article  CAS  Google Scholar 

  32. Xie H., Lu J. L., Shekhar M., Elam J. W., Delgass W. N., Ribeiro F. H., Weitz E., Poeppelmeier K. R., ACS Catalysis, 2013, 3(1), 61

    Article  CAS  Google Scholar 

  33. Samson K., Śliwa M., Socha R. P., Góra-Marek. K., Mucha D., Rutkowska-Zbik D., Paul J. F., Ruggiero-Mikołajczyk M., Grabowski R., Słoczyński J., ACS Catalysis, 2014, 4(10), 3730

    CAS  Google Scholar 

  34. Zhang C. W., Xu L. B., Shan N. N., Sun T. T., Chen J. F., Yan Y. S., ACS Catalysis, 2014, 4(6), 1926

    Article  CAS  Google Scholar 

  35. Duan L. L., Fu R., Xiao Z. G., Zhao Q. F., Wang J. Q., Chen S. J., Wan Y., ACS Catalysis, 2015, 5(2), 575

    Article  CAS  Google Scholar 

  36. Li N., Wang X. M., Derrouiche S., Haller G. L., Pfefferle L. D., ACS Nano., 2010, 4(3), 1759

    Article  CAS  PubMed  Google Scholar 

  37. Pentsak E. O., Gordeev E. G., Ananikov V. P., ACS Catalysis, 2014, 4(11), 3806

    Article  CAS  Google Scholar 

  38. Chen Y., Chen H. R., Shi J. L., Accounts of Chemical Research, 2014, 47(1), 125

    Article  CAS  PubMed  Google Scholar 

  39. Fu T., Cheng R. H., He X. L., Liu Z., Tian Z., Liu B. P., Chin. J. Polym. Sci., 2017, 35(6), 739

    Article  CAS  Google Scholar 

  40. Lin X., Fu L. L., Chen Y., Zhu R. L., Wang S. Y., Liu Z. G., ACS Applied Materials & Interfaces, 2016, 8(40), 26809

    Article  CAS  Google Scholar 

  41. Guo T. Y., Du J. P., Wang S., Wu J. T., Li J. P., Chem. Res. Chinese Universities, 2016, 32(5), 843

    Article  CAS  Google Scholar 

  42. den Otter J. H., Nijveld S. R., de Jong K. P., ACS Catalysis, 2016, 6(3), 1616

    Article  CAS  Google Scholar 

  43. Vosoughi V., Badoga S., Dalai A. K., Abatzoglou N., Industrial & Engineering Chemistry Research, 2016, 55(21), 6049

    Article  CAS  Google Scholar 

  44. Fu T. J., Lv J., Li Z. H., Industrial & Engineering Chemistry Research, 2014, 53(4), 1342

    Article  CAS  Google Scholar 

  45. Kuo C. H., Li W. K., Song W. Q., Luo Z., Poyraz A. S., Guo Y., Ma A. W. K., Suib S. L., He J., ACS Applied Materials & Interfaces, 2014, 6(14), 11311

    Article  CAS  Google Scholar 

  46. Chen B., Chen J., Li J. Y., Tong X., Zhao H. C., Wang L. P., Chin. J. Polym. Sci., 2017, 35(3), 446

    Article  CAS  Google Scholar 

  47. Guo Y. L., Zhang R. Z., Wu K., Chen F., Fu Q., Chin. J. Polym. Sci., 2017, 35(12), 1497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Niu.

Additional information

Supported by the Natural Science Foundation of Heilongjiang Province, China(No.B20170001), the Postdoctoral Fund of Heilongjiang Province, China(No.LBH-Z16009), the Fundamental Research Funds for the Central Universities, China(No. 2572018BC28) and the Postdoctoral Science Foundation of China(Nos.2016M591501, 2017T100218).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Zhang, Z., Niu, N. et al. Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation. Chem. Res. Chin. Univ. 34, 635–642 (2018). https://doi.org/10.1007/s40242-018-7381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7381-1

Keywords

Navigation