Skip to main content
Log in

High-efficient synthesis of zeolite LTA via a wet-gel crystallization route

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Zeolite LTA has been largely used as good adsorbent and detergent builder with a huge amount of demand. Numerous efforts have been devoted to the exploration of new synthetic methods for preparing zeolites more conveniently and efficiently. Herein, we reported a wet-gel crystallization route to synthesize zeolite LTA from simple filtration of the initial reaction mixture followed by heating for crystallization. The products were characterized in detail by means of X-ray diffraction, Raman spectra, scanning electron microscopy and elemental analysis. The yields of the solid products were also investigated, which suggested that the wet-gel method afforded an obvious improvement of products yield compared with the conventional synthesis route. For application as detergent builder, the calcium ion exchange rates of the wet-gel synthesized zeolites were similar with that of conventional LTA zeolites. Therefore the wet-gel route would be potentially important in industry due to its advantages of easy-performing, high-yielding and energy-saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breck D. W., Zeolite Molecular Sieves, Krieger Publishing Co., Malabar, 1984

    Google Scholar 

  2. Bekkum H., Flanigen E. M., Jacobs P. A., Jansen J. C., Introduction to Zeolite Science and Practice, Elsevier, Amsterdam, 2001

    Google Scholar 

  3. Corma A., Chem. Rev., 1995, 95, 559

    Article  CAS  Google Scholar 

  4. Davis M. E., Nature, 2002, 417, 813

    Article  CAS  Google Scholar 

  5. Xu S., Zhang J., Li G., Xiao P., Zhai Y. C., Chem. Res. Chinese Universities, 2012, 28(1), 129

    Google Scholar 

  6. Lok B. M., Cannan T. R., Messina C. A., Zeolites, 1983, 3, 282

    Article  CAS  Google Scholar 

  7. Lok B. M., Cannan T. R., Messina C. A., Chem. Rev., 2003, 103, 663

    Article  Google Scholar 

  8. Paillaud J. L., Harbuzaru B., Patarin J., Bats N., Science, 2004, 304, 990

    Article  CAS  Google Scholar 

  9. Corma A., Díaz-Cabanas M. J., Rey F., Nicolopoulusa S., Boulahya K., Chem. Commun., 2004, 12, 1356

    Article  Google Scholar 

  10. Ji Y. Y., Wang Y. Q., Xie B., Xiao F. S., Comment. Inorg. Chem., 2016, 36, 1

    Article  CAS  Google Scholar 

  11. Villaescusa L. A., Barrett P. A., Camblor M. C., Chem. Commun., 1998, 23, 29

    Google Scholar 

  12. Villaescusa L. A., Barrett P. A., Camblor M. C., Angew. Chem. Int. Ed., 1999, 38, 1997

    Article  CAS  Google Scholar 

  13. Corma A., Puche M., Rey F., Sankar G., Teat S. J., Angew. Chem. Int. Ed., 2003, 42, 1156

    Article  CAS  Google Scholar 

  14. Barrett P. A., Boix T., Puche M., Olson D. H., Jordan E., Koller H., Camblor M.A., Chem. Commun., 2003, 9(17), 2114

    Article  Google Scholar 

  15. Xu W. Y., Dong L. X., Li J. P., J. Chem. Soc. Chem. Commun., 1990, 10, 755

    Article  Google Scholar 

  16. Wang Y. X., Gies H., Marler B., Chem. Mater., 2005, 17, 43

    Article  Google Scholar 

  17. Ren L., Wu Q., Yang C., Zhu L., Li C., Zhang P., Zhang H., Meng X. J., Xiao F. S., J. Am. Chem. Soc., 2012, 134, 15173

    Article  CAS  Google Scholar 

  18. Wu Q., Wang X., Qi G., Guo Q., Pan S., Meng X. J., Xu J., Deng F., Fan F., Feng Z., Li C., Maurer S., Müller U., Xiao F. S., J. Am. Chem. Soc., 2014, 136, 4019

    Article  CAS  Google Scholar 

  19. Wu Q., Liu X., Zhu L., Ding L., Gao P., Wang X., Pan S., Bian C., Meng X. J., Xu J., Deng F., Maurer S., Müller U., Xiao F. S., J. Am. Chem. Soc., 2015, 137, 1052

    Article  CAS  Google Scholar 

  20. Mintova S., Olson N. H., Valtchev V., Bein T., Science, 1999, 283, 958

    Article  CAS  Google Scholar 

  21. Valtchev V. P., Bozhilov K. N., J. Am. Chem. Soc., 2005, 127, 16171

    Article  CAS  Google Scholar 

  22. Smaihi M., Barida O., Valtchev V., Eur. J. Inorg. Chem., 2003, 24, 4370

    Article  Google Scholar 

  23. Ren L., Li C., Fan F., Guo Q., Liang D., Feng Z., Li C., Li S., Xiao F. S., Chem. Eur. J., 2011, 17, 6162

    Article  CAS  Google Scholar 

  24. Kurtoglu A. E., Atun G., Sep. Purif. Technol., 2006, 50, 62

    Article  CAS  Google Scholar 

  25. Shek T. H., Ma A., Lee V. K. C., McKay G., Chem. Eng. J., 2009, 146, 63

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Ji.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21403193, 51503148) and the Natural Science Foundation of Tianjin City, China(Nos.14JCQNJC02500, 15JCQNJC09000).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Zhang, B., Zhang, W. et al. High-efficient synthesis of zeolite LTA via a wet-gel crystallization route. Chem. Res. Chin. Univ. 33, 520–524 (2017). https://doi.org/10.1007/s40242-017-7008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-7008-y

Keywords

Navigation