Skip to main content

Advertisement

Log in

Effect of amine structure on CO2 capture performance of amine-modified SBA-15

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

To investigate the relative CO2 capture performance of “molecular basket” type solid amine sorbents with varying amine structural characteristics, two model amine isomers, triethylenetetramine(TETA) and tris(2-aminoethyl)-amine(TAEA), were chosen alongside mesoporous silica SBA-15 as a support. The CO2 capture performance of each amine derivative was evaluated using a breakthrough method with a fixed-bed reactor. The results show that, in the absence of moisture, the SBA-TETA sorbents show better CO2 capture performance than the SBA-TAEA sorbents; on the other hand, in the presence of moisture, the SBA-TAEA sorbents show slightly improved uptake compared to the SBA-TETA sorbents. The tertiary amine groups, such as those found on TAEA, are known to be un-reactive with CO2 in the absence of moisture, but is activated in the presence of moisture may account for these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu X., Song C., Andresen J. M., Miller B. G., Scaroni A. W., Energy & Fuels, 2002, 16(6), 1463

    Article  CAS  Google Scholar 

  2. Choi S., Drese J. H., Jones C. W., Chemsuschem, 2009, 2(9), 796

    Article  CAS  Google Scholar 

  3. Belmabkhout Y., Serna-Guerrero R., Sayari A., Ind. Eng. Chem. Res., 2010, 49(1), 359

    Article  CAS  Google Scholar 

  4. Wang L., Ma L., Wang A., Liu Q., Zhang T., Chin. J. Catal., 2007, 28(9), 805

    Article  CAS  Google Scholar 

  5. Zheng F., Tran D. N., Busche B. J., Fryxell G. E., Addleman R. S., Zemanian T. S., Aardahl C. L., Ind. Eng. Chem. Res., 2005, 44(9), 3099

    Article  CAS  Google Scholar 

  6. Feng X. X., Xie J., Hu G. S., Jia A. P., Xie G. Q., Luo M. F., Acta Physico-Chimica Sinica, 2013, 29(6), 1266

    CAS  Google Scholar 

  7. Feng X. X., Hu G. S., Hu X., Xie G. Q., Xie Y. L., Lu J. Q., Luo M. F., Ind. Eng. Chem. Res., 2013, 52(11), 4221

    Article  CAS  Google Scholar 

  8. Yan X., Zhang L., Zhang Y., Qiao K., Yan Z., Komarneni S., Chem. Eng. J., 2011, 168(2), 918

    Article  CAS  Google Scholar 

  9. Knowles G. P., Delaney S. W., Chaffee A. L., Ind. Eng. Chem. Res., 2006, 45(8), 2626

    Article  CAS  Google Scholar 

  10. Knowles G. P., Graham J. V., Delaney S. W., Chaffee A. L., Fuel Process. Technol., 2005, 86(14), 1435

    Article  CAS  Google Scholar 

  11. Yan X., Zhang L., Zhang Y., Yang G., Yan Z., Ind. Eng. Chem. Res., 2011, 50(6), 3220

    Article  CAS  Google Scholar 

  12. Chen C., Yang S. T., Ahn W. S., Ryoo R., Chem. Commum., 2009, (24), 3627

    Article  Google Scholar 

  13. Li P., Ge B., Zhang S., Chen S., Zhang Q., Zhao Y., Langmuir, 2008, 24(13), 6567

    Article  CAS  Google Scholar 

  14. Wang X., Li H., Liu H., Hou X., Micropor. Mesopor. Mater., 2011, 142, 564

    Article  CAS  Google Scholar 

  15. Subagyono D. J. N., Liang Z., Knowles G. P., Chaffee A. L., Chem. Eng. Res. Des., 2011, 89(9), 1647

    Article  CAS  Google Scholar 

  16. Sayari A., Heydari-Gorji A., Yang Y., J. Am. Chem. Soc., 2012, 134(33), 13834

    Article  CAS  Google Scholar 

  17. Sartorl G., Savage D. W., Ind. Eng. Chem. Fundam., 1983, 22, 239

    Article  Google Scholar 

  18. Perinu C., Arstad B., Bouzga A. M., Jens K. J., J. Phys. Chem. B, 2014, 118(34), 10167

    Article  CAS  Google Scholar 

  19. Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science, 1998, 279, 548

    Article  CAS  Google Scholar 

  20. Yao M., Dong Y., Hu X., Feng X., Jia A., Xie G., Hu G. S., Lu J., Luo M., Fan M., Energy & Fuels, 2013, 27(12), 7673

    Article  CAS  Google Scholar 

  21. Harlick P. J. E., Sayari A., Ind. Eng. Chem. Res., 2007, 46(2), 446

    Article  CAS  Google Scholar 

  22. Yao M., Dong Y., Feng X., Hu X., Jia A., Xie G., Hu G. S., Lu J., Luo M., Fan M., Fuel, 2014, 123, 66

    Article  CAS  Google Scholar 

  23. Liu X., Li X. B., Guan Z. H., Liu J., Zhao J., Yang Y., Yang Q. H., Chem. Commun., 2011, 47(28), 8073

    Article  CAS  Google Scholar 

  24. Huang H. Y., Yang R. T., Ind. Eng. Chem. Res., 2003, 42(12), 2427

    Article  CAS  Google Scholar 

  25. Franchi R. S., Harlick P. J. E., Sayari A., Ind. Eng. Chem. Res., 2005, 44(21), 8007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Jiang or Gengshen Hu.

Additional information

Supported by the Natural Science Foundation of Zhejiang Province, China(Nos.LQ13G020010, LY16B070001) and the National Natural Science Foundation of China(No.21203167).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Jiang, W. & Hu, G. Effect of amine structure on CO2 capture performance of amine-modified SBA-15. Chem. Res. Chin. Univ. 33, 666–671 (2017). https://doi.org/10.1007/s40242-017-6340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6340-6

Keywords

Navigation