Skip to main content

Advertisement

Log in

Rapid degradation of ABCA1 protein following cAMP withdrawal and treatment with PKA inhibitor suggests ABCA1 is a short-lived protein primarily regulated at the transcriptional level

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

ATP-binding cassette transporter A1 (ABCA1) is a key player in the reverse cholesterol transport (RCT) and HDL biogenesis. Since RCT is compromised as a result of ABCA1 dysfunction in diabetic state, the objective of this study was to investigate the regulation of ABCA1 in a stably transfected 293 cells expressing ABCA1 under the control of cAMP response element.

Methods

To delineate transcriptional and posttranscriptional regulation of ABCA1, 293 cells were stably transfected with the full length ABCA1 cDNA under the control of CMV promoter harboring cAMP response element. cAMP-mediated regulation of ABCA1 and cholesterol efflux were studied in the presence of 8-Br-cAMP and after withdrawal of 8-Br-cAMP. The mechanism of cAMP-mediated transcriptional induction of the ABCA1 gene was studied in protein kinase A (PKA) inhibitors-treated cells.

Results

The transfected 293 cells expressed high levels of ABCA1, while non-transfected wild-type 293 cells showed very low levels of ABCA1. Treatments of transfected cells with 8-Br-cAMP increased ABCA1 protein by 10-fold and mRNA by 20-fold. Cholesterol efflux also increased in parallel. Withdrawal of 8-Br-cAMP caused time-dependent rapid diminution of ABCA1 protein and mRNA, suggesting ABCA1 regulation at the transcriptional level. Treatment with PKA inhibitors abolished the cAMP-mediated induction of the ABCA1 mRNA and protein, resulting dampening of ABCA1-dependent cholesterol efflux.

Conclusions

These results demonstrate that transfected cell line mimics cAMP response similar to normal cells with natural ABCA1 promoter and suggest that ABCA1 is a short-lived protein primarily regulated at the transcriptional level to maintain cellular cholesterol homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette transporter A1

cAMP:

cyclic AMP

PK:

protein kinase

TD:

Tangiers Disease

USF:

upstream stimulatory factor

DMEM:

Dulbecco’s minimal essential medium

FBS:

fetal bovine serum

LXR:

liver x receptor

RXR:

retinoid x receptor

apoA1:

apolipoprotein A1

HDL:

high density lipoprotein

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

8-Br-cAMP:

8-bromocyclic adenosine 3′, 5′ monophophate

References

  1. Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem. 2000;209:131–44.

    Article  CAS  Google Scholar 

  2. Srivastava N. ATP binding cassette transporter A1--key roles in cellular lipid transport and atherosclerosis. Mol Cell Biochem. 2002;237:155–64.

    Article  CAS  Google Scholar 

  3. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45. https://doi.org/10.1038/11905.

    Article  CAS  PubMed  Google Scholar 

  4. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22:347–51. https://doi.org/10.1038/11914.

    Article  CAS  PubMed  Google Scholar 

  5. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5. https://doi.org/10.1038/11921.

    Article  CAS  PubMed  Google Scholar 

  6. Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest. 1999;104:R25–31. https://doi.org/10.1172/jci8119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Remaley AT, Rust S, Rosier M, Knapper C, Naudin L, Broccardo C, et al. Human ATP-binding cassette transporter 1 (ABC1): genomic organization and identification of the genetic defect in the original Tangier disease kindred. Proc Natl Acad Sci U S A. 1999;96:12685–90.

    Article  CAS  Google Scholar 

  8. Orso E, Broccardo C, Kaminski WE, Bottcher A, Liebisch G, Drobnik W, et al. Transport of lipids from golgi to plasma membrane is defective in tangier disease patients and Abc1-deficient mice. Nat Genet. 2000;24:192–6. https://doi.org/10.1038/72869.

    Article  CAS  PubMed  Google Scholar 

  9. McNeish J, Aiello RJ, Guyot D, Turi T, Gabel C, Aldinger C, et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci U S A. 2000;97:4245–50.

    Article  CAS  Google Scholar 

  10. Cavelier C, Rohrer L, von Eckardstein A. ATP-binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells. Circ Res. 2006;99:1060–6. https://doi.org/10.1161/01.RES.0000250567.17569.b3.

    Article  CAS  PubMed  Google Scholar 

  11. Singaraja RR, Bocher V, James ER, Clee SM, Zhang LH, Leavitt BR, et al. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoAI-dependent efflux stimulated by an internal promoter containing liver X receptor response elements in intron 1. J Biol Chem. 2001;276:33969–79. https://doi.org/10.1074/jbc.M102503200.

    Article  CAS  PubMed  Google Scholar 

  12. Vaisman BL, Lambert G, Amar M, Joyce C, Ito T, Shamburek RD, et al. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J Clin Invest. 2001;108:303–9. https://doi.org/10.1172/jci12517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joyce CW, Amar MJ, Lambert G, Vaisman BL, Paigen B, Najib-Fruchart J, et al. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc Natl Acad Sci U S A. 2002;99:407–12. https://doi.org/10.1073/pnas.012587699.

    Article  CAS  PubMed  Google Scholar 

  14. Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, et al. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun. 1999;257:29–33. https://doi.org/10.1006/bbrc.1999.0406.

    Article  CAS  PubMed  Google Scholar 

  15. Costet P, Lalanne F, Gerbod-Giannone MC, Molina JR, Fu X, Lund EG, et al. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol Cell Biol. 2003;23:7756–66.

    Article  CAS  Google Scholar 

  16. Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, et al. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem. 2001;276:38378–87. https://doi.org/10.1074/jbc.M105805200.

    Article  CAS  PubMed  Google Scholar 

  17. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A. 2000;97:12097–102. https://doi.org/10.1073/pnas.200367697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Oram JF. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J Biol Chem. 2002;277:5692–7. https://doi.org/10.1074/jbc.M109977200.

    Article  CAS  PubMed  Google Scholar 

  19. Srivastava RAK. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018;440:167–87. https://doi.org/10.1007/s11010-017-3165-z.

    Article  CAS  PubMed  Google Scholar 

  20. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes. 2011;60:2617–23. https://doi.org/10.2337/db11-0378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem Res Toxicol. 2010;23:447–54. https://doi.org/10.1021/tx9003775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uehara Y, Engel T, Li Z, Goepfert C, Rust S, Zhou X, et al. Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1. Diabetes. 2002;51:2922–8.

    Article  CAS  Google Scholar 

  23. Tang C, Kanter JE, Bornfeldt KE, Leboeuf RC, Oram JF. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res. 2010;51:1719–28. https://doi.org/10.1194/jlr.M003525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Passarelli M, Tang C, McDonald TO, O'Brien KD, Gerrity RG, Heinecke JW, et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 2005;54:2198–205.

    Article  CAS  Google Scholar 

  25. Patel DC, Albrecht C, Pavitt D, Paul V, Pourreyron C, Newman SP, et al. Type 2 diabetes is associated with reduced ATP-binding cassette transporter A1 gene expression, protein and function. PLoS One. 2011;6:e22142. https://doi.org/10.1371/journal.pone.0022142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Oram JF. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a phospholipase D2 pathway. J Biol Chem. 2005;280:35896–903. https://doi.org/10.1074/jbc.M506210200.

    Article  CAS  PubMed  Google Scholar 

  27. Smith JD, Miyata M, Ginsberg M, Grigaux C, Shmookler E, Plump AS. Cyclic AMP induces apolipoprotein E binding activity and promotes cholesterol efflux from a macrophage cell line to apolipoprotein acceptors. J Biol Chem. 1996;271:30647–55.

    Article  CAS  Google Scholar 

  28. Takahashi Y, Miyata M, Zheng P, Imazato T, Horwitz A, Smith JD. Identification of cAMP analogue inducible genes in RAW264 macrophages. Biochim Biophys Acta. 2000;1492:385–94.

    Article  CAS  Google Scholar 

  29. Oram JF, Lawn RM, Garvin MR, Wade DP. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem. 2000;275:34508–11. https://doi.org/10.1074/jbc.M006738200.

    Article  CAS  PubMed  Google Scholar 

  30. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem. 2002;277:18793–800. https://doi.org/10.1074/jbc.M109927200.

    Article  CAS  PubMed  Google Scholar 

  31. Le Goff W, Zheng P, Brubaker G, Smith JD. Identification of the cAMP-responsive enhancer of the murine ABCA1 gene: requirement for CREB1 and STAT3/4 elements. Arterioscler Thromb Vasc Biol. 2006;26:527–33. https://doi.org/10.1161/01.Atv.0000201042.00725.84.

    Article  PubMed  Google Scholar 

  32. See RH, Caday-Malcolm RA, Singaraja RR, Zhou S, Silverston A, Huber MT, et al. Protein kinase A site-specific phosphorylation regulates ATP-binding cassette A1 (ABCA1)-mediated phospholipid efflux. J Biol Chem. 2002;277:41835–42. https://doi.org/10.1074/jbc.M204923200.

    Article  CAS  PubMed  Google Scholar 

  33. Meier JL, Stinski MF. Regulation of human cytomegalovirus immediate-early gene expression. Intervirology. 1996;39:331–42. https://doi.org/10.1159/000150504.

    Article  CAS  PubMed  Google Scholar 

  34. Lashmit P, Wang S, Li H, Isomura H, Stinski MF. The CREB site in the proximal enhancer is critical for cooperative interaction with the other transcription factor binding sites to enhance transcription of the major intermediate-early genes in human cytomegalovirus-infected cells. J Virol. 2009;83:8893–904. https://doi.org/10.1128/jvi.02239-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Back S, Dossat A, Parkkinen I, Koivula P, Airavaara M, Richie CT, et al. Neuronal activation stimulates cytomegalovirus promoter-driven transgene expression. Mol Ther Methods Clin Dev. 2019;14:180–8. https://doi.org/10.1016/j.omtm.2019.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods. 2005;51:187–200. https://doi.org/10.1016/j.vascn.2004.08.014.

    Article  CAS  PubMed  Google Scholar 

  37. Juszczak RJ, Russell JH. Inhibition of cytotoxic T lymphocyte-mediated lysis and cellular proliferation by isoquinoline sulfonamide protein kinase inhibitors. Evidence for the involvement of protein kinase C in lymphocyte function. J Biol Chem. 1989;264:810–5.

    CAS  PubMed  Google Scholar 

  38. Munehira Y, Ohnishi T, Kawamoto S, Furuya A, Shitara K, Imamura M, et al. Alpha1-syntrophin modulates turnover of ABCA1. J Biol Chem. 2004;279:15091–5. https://doi.org/10.1074/jbc.M313436200.

    Article  CAS  PubMed  Google Scholar 

  39. Bowden K, Ridgway ND. OSBP negatively regulates ABCA1 protein stability. J Biol Chem. 2008;283:18210–7. https://doi.org/10.1074/jbc.M800918200.

    Article  CAS  PubMed  Google Scholar 

  40. Hansen TV, Rehfeld JF, Nielsen FC. Mitogen-activated protein kinase and protein kinase A signaling pathways stimulate cholecystokinin transcription via activation of cyclic adenosine 3′,5′-monophosphate response element-binding protein. Mol Endocrinol. 1999;13:466–75. https://doi.org/10.1210/mend.13.3.0257.

    Article  CAS  PubMed  Google Scholar 

  41. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001;7:53–8. https://doi.org/10.1038/83348.

    Article  CAS  PubMed  Google Scholar 

  42. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001;7:161–71.

    Article  CAS  Google Scholar 

  43. Oliver WR Jr, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A. 2001;98:5306–11. https://doi.org/10.1073/pnas.091021198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panousis CG, Zuckerman SH. Interferon-gamma induces downregulation of Tangier disease gene (ATP-binding-cassette transporter 1) in macrophage-derived foam cells. Arterioscler Thromb Vasc Biol. 2000;20:1565–71.

    Article  CAS  Google Scholar 

  45. Park DW, Lee HK, Lyu JH, Chin H, Kang SW, Kim YJ, et al. TLR2 stimulates ABCA1 expression via PKC-eta and PLD2 pathway. Biochem Biophys Res Commun. 2013;430:933–7. https://doi.org/10.1016/j.bbrc.2012.11.135.

    Article  CAS  PubMed  Google Scholar 

  46. Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, et al. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis. 2009;203:417–28. https://doi.org/10.1016/j.atherosclerosis.2008.07.029.

    Article  CAS  PubMed  Google Scholar 

  47. Field FJ, Watt K, Mathur SN. TNF-alpha decreases ABCA1 expression and attenuates HDL cholesterol efflux in the human intestinal cell line Caco-2. J Lipid Res. 2010;51:1407–15. https://doi.org/10.1194/jlr.M002410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem. 2009;284:32336–43. https://doi.org/10.1074/jbc.M109.047472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gan X, Kaplan R, Menke JG, MacNaul K, Chen Y, Sparrow CP, et al. Dual mechanisms of ABCA1 regulation by geranylgeranyl pyrophosphate. J Biol Chem. 2001;276:48702–8. https://doi.org/10.1074/jbc.M109402200.

    Article  CAS  PubMed  Google Scholar 

  50. Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004;114:529–41. https://doi.org/10.1172/jci21109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicholls SJ, Zheng L, Hazen SL. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc Med. 2005;15:212–9. https://doi.org/10.1016/j.tcm.2005.06.004.

    Article  CAS  PubMed  Google Scholar 

  52. Shao B, Cavigiolio G, Brot N, Oda MN, Heinecke JW. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc Natl Acad Sci U S A. 2008;105:12224–9. https://doi.org/10.1073/pnas.0802025105.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ory DS, Schaffer JE. ApoA-1 in diabetes: damaged goods. Diabetes. 2010;59:2358–9. https://doi.org/10.2337/db10-1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kotani K, Sakane N, Ueda M, Mashiba S, Hayase Y, Tsuzaki K, et al. Oxidized high-density lipoprotein is associated with increased plasma glucose in non-diabetic dyslipidemic subjects. Clin Chim Acta. 2012;414:125–9. https://doi.org/10.1016/j.cca.2012.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iborra RT, Machado-Lima A, Okuda LS, Pinto PR, Nakandakare ER, Machado UF, et al. AGE-albumin enhances ABCA1 degradation by ubiquitin-proteasome and lysosomal pathways in macrophages. J Diabetes Complicat. 2018;32:1–10. https://doi.org/10.1016/j.jdiacomp.2017.09.012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rai Ajit K Srivastava evaluated data from the studies and has contributed to the interpretation and analyses of data as well as writing of the manuscript. Neelam Srivastava and Angelo Cefalu designed the studies, carried out some of the experiments, and wrote part of the manuscript. Maurizio Averna contributed to the review and interpretation of data and wrote part of the manuscript.

Corresponding author

Correspondence to Rai Ajit K. Srivastava.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval and informed consent statement

Studies carried out in this report did not use any animal species. The cell-based assays were carried out according to the institutional guidelines. All authors agree to the publication of the results contained in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Cefalu, A.B., Averna, M. et al. Rapid degradation of ABCA1 protein following cAMP withdrawal and treatment with PKA inhibitor suggests ABCA1 is a short-lived protein primarily regulated at the transcriptional level. J Diabetes Metab Disord 19, 363–371 (2020). https://doi.org/10.1007/s40200-020-00517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00517-0

Keywords

Navigation