Skip to main content

Advertisement

Log in

Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

CoCrNiCux (x = 0.16, 0.33, 0.75, and 1) without macro-segregation medium-entropy alloys (MEAs) was prepared using laser directed energy deposition (LDED). The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated. The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys. In addition, the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa, and the ductility increased from 1 to 11% with increasing Cu content. The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area, and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy. These misfit dislocations hinder the movement of dislocations during tensile deformation, as observed through transmission electron microscopy. This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity, and a new strengthening mechanism was achieved for the CoCrNiCu alloy. Moreover, twins were observed in the matrix phase after tensile fracture. Simultaneously, the dual-phase structure with different elastic moduli coordinated with each other during the deformation process, significantly improving the plasticity and strength of the CoCrNiCu alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I.A. Alhafez, C.J. Ruestes, S.T. Zhao, A.M. Minor, H.M. Urbassek, Mater. Lett. 283, 5 (2021)

    Google Scholar 

  2. J.W. Yeh, JOM 65, 1759 (2013)

    Article  CAS  Google Scholar 

  3. H.W. Deng, M.M. Wang, Z.M. Xie, T. Zhang, X.P. Wang, Q.F. Fang, Y. Xiong, Mater. Sci. Eng. A Process. 804, 11 (2021)

    Google Scholar 

  4. H. Luo, S.S. Sohn, W.J. Lu, L.L. Li, X.G. Li, C.K. Soundararajan, W. Krieger, Z.M. Li, D. Raabe, Nat. Commun. 11, 1 (2020)

    Google Scholar 

  5. W.R. Jian, Z.C. Xie, S.Z. Xu, Y.Q. Su, X.H. Yao, I.J. Beyerlein, Acta Mater. 199, 352 (2020)

    Article  CAS  Google Scholar 

  6. X.H. Du, W.P. Li, H.T. Chang, T. Yang, E.W.J.N.C. Huang, Nat. Commun. 11, 2390 (2020)

    Article  CAS  Google Scholar 

  7. H.Y. Liu, C. Gu, K. Zhai, C.D. Wang, Vacuum 184, 5 (2021)

    Google Scholar 

  8. J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Intermetallics 84, 52 (2017)

    Article  CAS  Google Scholar 

  9. W.L. Wang, L. Hu, S.B. Luo, L.J. Meng, D.L. Geng, B. Wei, Intermetallics 77, 41 (2016)

    Article  CAS  Google Scholar 

  10. C. Li, Y.F. Xue, M.T. Hua, T.Q. Cao, L.L. Ma, L. Wang, Mater. Des. 90, 601 (2016)

    Article  CAS  Google Scholar 

  11. P.H. Wu, N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, X.J. Wang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 642, 142 (2015)

    Article  CAS  Google Scholar 

  12. D.E. Jodi, N. Park, Mater. Lett. 255, 4 (2019)

    Article  Google Scholar 

  13. X. Xian, L.J. Lin, Z.H. Zhong, C. Zhang, C. Chen, K.J. Song, J.G. Cheng, Y.C. Wu, Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 713, 134 (2018)

    Article  CAS  Google Scholar 

  14. L. Huang, X.J. Wang, X.C. Zhao, C.Z. Wang, Y.S. Yang, Mater. Chem. Phys. 259, 9 (2021)

    Article  Google Scholar 

  15. C.F. Lee, T.T. Shun, Mater. Charact. 114, 179 (2016)

    Article  CAS  Google Scholar 

  16. Y. Liu, Y. He, S.L. Cai, Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 801, 11 (2021)

    Google Scholar 

  17. J. Chen, P.Y. Niu, Y.Z. Liu, Y.K. Lu, X.H. Wang, Y.L. Peng, J.N. Liu, Mater. Des. 94, 39 (2016)

    Article  CAS  Google Scholar 

  18. T.N. Lam, S.Y. Lee, N.T. Tsou, H.S. Chou, B.H. Lai, Y.J. Chang, R. Feng, T. Kawasaki, S. Harjo, P.K. Liaw, A.C. Yeh, M.J. Li, R.F. Cai, S.C. Lo, E.W. Huang, Acta Mater. 201, 412 (2020)

    Article  CAS  Google Scholar 

  19. M. Ombrellino, H.C. Wang, H. Yang, M.H. Zhang, J. Vishnubhakat, A. Frazier, L.A. Scher, S.G. Friedman, K.J. Tracey, Shock 15, 181 (2001)

    Article  CAS  Google Scholar 

  20. I. Moravcik, V. Hornik, P. Minarik, L.L. Li, I. Dlouhy, M. Janovska, D. Raabe, Z.M. Li, Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 781, 14 (2020)

    Article  Google Scholar 

  21. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  22. A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Mater. Lett. 224, 22 (2018)

    Article  CAS  Google Scholar 

  23. G. Bracq, M. Laurent-Brocq, C. Varvenne, L. Perriere, W.A. Curtin, J.M. Joubert, I. Guillot, Acta Mater. 177, 266 (2019)

    Article  CAS  Google Scholar 

  24. X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012)

    Article  CAS  Google Scholar 

  25. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008)

    Article  CAS  Google Scholar 

  26. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 5 (2011)

    Google Scholar 

  27. Z.X. Xia, C.Y. Wang, D. Zhao, R. Zhang, P. Cheng, X.D. He, Surf. Coat. Technol. 367, 108 (2019)

    Article  CAS  Google Scholar 

  28. Z.X. Xia, J.C. Xu, J.J. Shi, T. Shi, C.F. Sun, D. Qiu, Addit. Manuf. 33, 101114 (2020)

    CAS  Google Scholar 

  29. A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)

    Article  CAS  Google Scholar 

  30. D. Qiu, W.Z. Zhang, Acta Mater. 56, 1897 (2008)

    Article  CAS  Google Scholar 

  31. Y.X. Liang, X.F. Yang, K.S. Ming, S.H. Xiang, Q. Liu, Sci. China-Technol. Sci. 64, 407 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSAF) joint Fund (Grant No. U2030102) and the National Natural Science Foundation of China (Grant No. 52071124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixin Xia or Jixin Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Xia, Z., Hou, J. et al. Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition. Acta Metall. Sin. (Engl. Lett.) 34, 1591–1600 (2021). https://doi.org/10.1007/s40195-021-01316-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01316-z

Keywords

Navigation