Skip to main content
Log in

Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

This work aims to develop a reliable method to predict mechanical properties of friction-stir-welded 6xxx-series alloys with experimentally measured welding heat input. A calorimetrical method was utilized to experimentally measure the welding heat input in the friction stir welded of aluminum alloy 6063-T5. Good correlations between the input variables, i.e., welding parameters and physical properties of the materials, and the welding heat inputs obtained with experimental measurements were discovered. The welding heat input can be predicted using the empirical equation derived based on these correlations. Moreover, the results suggested that the thermal conductivities of the welded alloys affected the welding heat input significantly. Mechanical properties, including hardness and tensile properties, of friction-stir-welded aluminum alloy 6063 were in good correlation to the heat input obtained with experimental measurement. These correlations were explained by the evolution of the strengthening precipitates during welding. This work proposed a reliable new route to predict these mechanical responses through the estimation of heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Simar, Y. Bréchet, B. Meester, A. Denquin, C. Gallais, T. Pardoen, Prog. Mater Sci. 57, 95 (2012)

    Article  CAS  Google Scholar 

  2. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng., R 50, 1 (2005)

    Article  CAS  Google Scholar 

  3. Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, Metall. Mater. Trans. A 30, 2429 (1999)

    Article  Google Scholar 

  4. Y.S. Sato, H. Kokawa, Metall. Mater. Trans. A 32, 3023 (2001)

    Article  Google Scholar 

  5. Y.S. Sato, M. Urata, H. Kokawa, Metall. Mater. Trans. A 33, 625 (2002)

    Article  Google Scholar 

  6. A. Simar, Y. Bréchet, B. Meester, A. Denquin, T. Pardeon, Mater. Sci. Eng., A 486, 85 (2008)

    Article  CAS  Google Scholar 

  7. W.B. Lee, Y.M. Yeon, S.B. Jung, Mater. Sci. Technol. 19, 1513 (2003)

    Article  CAS  Google Scholar 

  8. A. Heinz, B. Skrotzki, J. Metall. Mater. Trans. B 33, 1543 (2002)

    Google Scholar 

  9. G.N. Ahmad, J. Padman, M.S. Raza, A. Kuma, N.K. Singh, in IOP Conference Series: Materials Science and Engineering 377: International Conference on Mechanical, Materials and Renewable Energy, 8–10 Dec 2017, Sikkim (2017)

  10. J.S. Sashank, P. Sampath, P.S. Krishna, R. Sagar, S. Venukumar, S. Muthukumaran, Mater. Today Proceed. 5, 8348 (2018)

    Article  CAS  Google Scholar 

  11. G.M. Gençer, N. Öztoprak, H.T. Serindağ, Mater. Werkst. 49, 1059 (2018)

    Article  CAS  Google Scholar 

  12. A. Dorbane, G. Ayoub, B. Mansoor, R.F. Hamade, A. Imad, J. Mater. Eng. Perform. 26, 2542 (2017)

    Article  CAS  Google Scholar 

  13. D. Venkateswarulu, M. Cheepu, D. Krishnaja, S. Muthukumaran, Appl. Mech. Mater. 877, 163 (2018)

    Article  Google Scholar 

  14. L. Zhang, H. Zhong, S. Li, H. Zhao, J. Chen, L. Qi, Int. J. Fatigue (2020) (in press)

  15. L. Svensson, L. Karlsson, H. Larsson, B. Karlsson, M. Fazzini, J. Karlsson, Sci. Technol. Weld. Join. 5, 285 (2000)

    Article  CAS  Google Scholar 

  16. Ø. Frigaard, Ø. Grong, O.T. Midling, Metall. Mater. Trans. A 32, 1189 (2001)

    Article  Google Scholar 

  17. L. Wan, Y. Huang, Z. Lv, S. Lv, J. Feng, Mater. Des. 55, 197 (2014)

    Article  CAS  Google Scholar 

  18. Y. Huang, Y. Xie, X. Meng, Z. Lv, J. Cao, J. Mater. Process. Technol. 252, 233 (2018)

    Article  Google Scholar 

  19. Y. Huang, Y. Xie, X. Meng, J. Li, Mater. Sci. Eng., A 740–741, 211 (2019)

    Google Scholar 

  20. Y. Huang, Y. Xie, X. Meng, J. Li, L. Zhou, J. Mater. Sci. Technol. 35, 1261 (2019)

    Article  Google Scholar 

  21. Y.S. Sato, T. Onuma, K. Ikeda, H. Kokawa, Sci. Technol. Weld. Join. 21, 325 (2016)

    Article  CAS  Google Scholar 

  22. D. Yi, T. Onuma, S. Mironov, Y.S. Sato, H. Kokawa, Sci. Technol. Weld. Join. 22, 41 (2017)

    Article  CAS  Google Scholar 

  23. K. Aota, H. Okamura, M. Ezumi, H. Takai, in Proc. 3rd Int. FSW. Symp. Kobe (TWI Ltd, Cambridge, 2001)

  24. T. Sun, A.P. Reynolds, M.J. Roy, P.J. Withers, Mater. Sci. Eng., A 735, 218 (2018)

    Article  CAS  Google Scholar 

  25. V. Patel, V. Badheka, A. Kumar, Metallogr. Microstrct. Anal. 5, 278 (2016)

    Article  CAS  Google Scholar 

  26. N. Zhu, L.N. Brewer, in Friction Stir Welding and Processing X, ed. by Y. Hovanski, R. Mishra, Y. Sato, P. Upadhyay, D. Yan (Springer, Cham, 2019), p. 269

    Chapter  Google Scholar 

  27. K. Cuellar, J. Silveira, J. Manuf. Sci. Eng. 139, 041017–041017-8 (2017)

    Article  Google Scholar 

  28. A. Banik, B. Roy, J. Barma, S.C. Saha, J. Manuf. Process. 31, 395 (2018)

    Article  Google Scholar 

  29. R. Kumar, K. Singh, S. Pandey, Trans. Nonferrous Metals Soc. China 22, 288 (2012)

    Article  CAS  Google Scholar 

  30. F. Lambiase, A. Paoletti, A. DiIlio, Int. J. Adv. Manuf. Technol. 99, 337 (2018)

    Article  Google Scholar 

  31. A. Heidarzadeh, A. Chabok, Y. Pei, Mater. Lett. 245, 94 (2019)

    Article  CAS  Google Scholar 

  32. M.M. Ahmed, B.P. Wynne, W.M. Rainforce, A. Addision, P.L. Threadgill, Metall. Mater. Trans. A 50, 271 (2019)

    Article  CAS  Google Scholar 

  33. H. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Sci. Lett. 22, 1061 (2003)

    Article  CAS  Google Scholar 

  34. A. Scialpi, L. Filippis, P. Cavaliere, Mater. Des. 28, 1124 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. A. Honda, and Mr. P. Pradeep for their technical assistance. They also wish to thank Prof. T. Anzai and Prof. R. Yoshimi for their helpful discussion. This work was partially supported by JSPS KAKENHI (a Grant-in-Aid for Challenging Exploratory Research, Grant No. 15K14137). This work was performed under the Joint Usage/Research Center on Joining and Welding, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbo Zhao.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Sato, Y.S., Kokawa, H. et al. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input. Acta Metall. Sin. (Engl. Lett.) 33, 1235–1242 (2020). https://doi.org/10.1007/s40195-020-01099-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01099-9

Keywords

Navigation