Skip to main content
Log in

First-Principles Calculations for Stable β-Ti–Mo Alloys Using Cluster-Plus-Glue-Atom Model

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Construction of suitable structural models in order to account for chemical short-range orders is the reason behind the difficult multi-scale computational simulation methods for solid solutions. Herein, using Ti–Mo alloys as representative, we used our cluster-plus-glue-atom model to address the chemical short-range orders for body-center cubic lattice. In accordance with the atomic interaction mode, an Mo solute atom would prefer 14 Ti solvent atoms as its nearest neighbors, forming a rhombic-dodecahedral cluster, and some next outer-shell Mo and Ti atoms would serve as the glue atoms, which is formulated as [Mo–Ti14](Mo,Ti)x. The number of glue atoms x corresponds to different spatial distribution of the clusters. One of the formula having good stability is [Mo–Ti14]Mo, i.e., with one Mo as the glue atom. To verify its stability, mechanical properties and electronic density of state are obtained using the first-principles calculations and the Young’s modulus agrees with the experimental values. Also the formulated structural unit [Mo–Ti14]Mo is indeed verified by the cluster expansion method. This work then confirms the existence of simple structural unit covering the nearest neighbors and a few next outer-shell atoms for the Ti–Mo alloy of high structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, Z.K. Liu, CALPHAD 42, 13 (2013)

    Article  Google Scholar 

  2. L. Vitos, in Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Springer, London, 2007)

  3. H.L. Hong, Q. Wang, C. Dong, P.K. Liaw, Sci. Rep. 4, 7065 (2014)

    Article  CAS  Google Scholar 

  4. D.D. Dong, Dissertation, Dalian University of Technology (2017)

  5. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, S. Niwa, Mater. Trans. 43, 2970 (2002)

    Article  CAS  Google Scholar 

  6. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater Sci. 54, 397 (2009)

    Article  CAS  Google Scholar 

  7. Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Appl. Phys. Lett. 87, 091906 (2005)

    Article  Google Scholar 

  8. D.Q. Martins, W.R. Oso’rio, M.E.P. Souza, R. Caram, A. Garcia, Electrochim. Acta 53, 2809 (2008)

    Article  CAS  Google Scholar 

  9. L.J. Xu, Y.Y. Chen, J. Alloys Compd. 453, 320 (2008)

    Article  CAS  Google Scholar 

  10. M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scr. Mater. 55, 477 (2006)

    Article  CAS  Google Scholar 

  11. P.J. Bania, in Beta Titanium Alloys in the 1990 s (TMS, Warrendale, 1993)

  12. E.W. Collings, in Physical Metallurgy of Titanium Alloys (ASM, Metals Park, 1984)

  13. Y. Zhang, Q. Wang, H.G. Dong, C. Dong, H.Y. Zhang, X.F. Sun, Acta Metall. Sin. (Engl. Lett.) 31, 127 (2018)

    Article  CAS  Google Scholar 

  14. C. Zhang, H. Tian, C.P. Hao, J.J. Zhao, Q. Wang, E.X. Liu, C. Dong, J. Matter. Sci. 48, 3138 (2013)

    Article  CAS  Google Scholar 

  15. C.P. Hao, Q. Wang, R.T. Ma, Y.M. Wang, J.B. Qiang, C. Dong, Acta Phys. Sin. 60, 116101 (2011)

    Google Scholar 

  16. Q. Wang, C. Ji, Y.M. Wang, J.B. Qiang, C. Dong, Metall. Mater. Trans. A 44, 1872 (2013)

    Article  CAS  Google Scholar 

  17. B.B. Jiang, Q. Wang, D.H. Wen, F. Xu, G.Q. Chen, C. Dong, L. Sun, P.K. Liaw, Mater. Sci. Eng., A 687, 1 (2017)

    Article  CAS  Google Scholar 

  18. J. Singh, P. Singh, S. Rattan, S. Prakash, Phys. Rev. B 49, 932 (1994)

    Article  CAS  Google Scholar 

  19. H. Sharma, S. Prakash, Pramana 68, 655 (2007)

    Article  CAS  Google Scholar 

  20. C. Pang, B.B. Jiang, Y. Shi, Q. Wang, C. Dong, J. Alloys Compd. 652, 63 (2015)

    Article  CAS  Google Scholar 

  21. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  23. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  25. J.M. Sanchez, F. Ducastelle, D. Gratias, Physica 128A, 334 (1984)

    Article  Google Scholar 

  26. A. van de Walle, G. Ceder, J. Phase Equilib. 23, 348 (2002)

    Article  Google Scholar 

  27. A. van de Walle, M. Asta, G. Ceder, CALPHAD 26, 539 (2002)

    Article  Google Scholar 

  28. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  Google Scholar 

  29. J.Y. Dai, J.M. Yuan, P. Giannozzi, Appl. Phys. Lett. 95, 232105 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0101206) and the Natural Science Foundation of China (Grant No. 11674045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Dong.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Pang, C., Zheng, Z. et al. First-Principles Calculations for Stable β-Ti–Mo Alloys Using Cluster-Plus-Glue-Atom Model. Acta Metall. Sin. (Engl. Lett.) 33, 968–974 (2020). https://doi.org/10.1007/s40195-020-01006-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01006-2

Keywords

Navigation