Skip to main content
Log in

Hydrogen Storage Performances of Nanocrystalline and Amorphous NdMg11Ni + x wt% Ni (x = 100, 200) Alloys Synthesized by Mechanical Milling

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Nanocrystalline and amorphous NdMg12-type NdMg11Ni + x wt% Ni (x = 100, 200) alloys were successfully prepared through ball milling (BM). The microstructures and electrochemical properties were systematically studied to get a more comprehensive understanding of the sample alloys. The maximum discharging capacity could be obtained at only two cycles, indicating that as-milled alloys have superior activation capability. The more the Ni content, the better the electrochemical properties of the as-milled samples. To be specific, the discharge capacities of x = 100 and x = 200 (BM 20 h) samples are 128.2 and 1030.6 mAh/g at 60 mAh/g current density, respectively, revealing that enhancement of Ni content could significantly improve the discharging capacities of the samples. Additionally, milling duration obviously influences the electrochemical properties of the samples. The discharging capacity always rises with milling duration prolonging for the x = 100 sample, but that of the (x = 200) sample shows a trend of first augment and then decrease. The cycling stability of the (x = 100) alloy clearly decreases with extending milling duration, whereas that of the (x = 200) alloy first declines and then augments under the same conditions. In addition, the high rate discharge (HRD) abilities of the sample display the maximal values as milling duration changes. The HRD (HRD = C300/C60 × 100%) values of the as-milled alloys (x = 100, 200) are 80.24% and 85.17%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.H. Enayati, F. Karimzadeh, S. Sabooni, M. Jafari, Acta Metall. Sin. (Engl. Lett.) 28, 1002 (2015)

    Article  Google Scholar 

  2. L.Z. Ouyang, T.H. Yang, M. Zhu, D. Min, T.Z. Luo, H. Wang, F.M. Xiao, R.H. Tang, J. Alloys Compd. 735, 98 (2018)

    Article  Google Scholar 

  3. Z. Cao, L.Z. Ouyang, L. Li, Int. J. Hydrogen Energy 40, 451 (2015)

    Article  Google Scholar 

  4. Y.H. Zhang, W. Zhang, J.L. Gao, Z.M. Yuan, W.G. Bu, Y. Qi, Acta Metall. Sin. (Engl. Lett.) 30, 1040 (2017)

    Article  Google Scholar 

  5. Y.H. Zhang, Z.M. Yuan, T. Yang, Z.H. Hou, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 28, 826 (2015)

    Article  Google Scholar 

  6. L.Z. Ouyang, Z. Cao, H. Wang, R.Z. Hu, M. Zhu, J. Alloys Compd. 691, 422 (2017)

    Article  Google Scholar 

  7. L.Z. Ouyang, X.S. Yang, H.W. Donga, M. Zhu, Scr. Mater. 61, 339 (2009)

    Article  Google Scholar 

  8. L.Z. Ouyang, F.X. Qin, M. Zhu, Scr. Mater. 55, 1075 (2006)

    Article  Google Scholar 

  9. M.S. El-Eskandarany, E. Shaban, A. Al-Shemmiri, Int. J. Hydrogen Energy 39, 21097 (2014)

    Article  Google Scholar 

  10. Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29, 577 (2016)

    Article  Google Scholar 

  11. T. Spassov, V. Rangelova, N. Neykov, J. Alloys Compd 334, 219 (2002)

    Article  Google Scholar 

  12. A.M. Jorge Jr., E. Prokofiev, G.F. de Lima, E. Rauch, M. Veron, W.J. Botta, M. Kawasaki, T.G. Langdon, Int. J. Hydrogen Energy 38, 8306 (2013)

    Article  Google Scholar 

  13. H. Gu, Y.F. Zhu, L.Q. Li, Int. J. Hydrogen Energy 33, 2970 (2008)

    Article  Google Scholar 

  14. Y. Wang, X. Wang, C.M. Li, Int. J. Hydrogen Energy 35, 3550 (2010)

    Article  Google Scholar 

  15. Q.A. Zhang, C.J. Jiang, D.D. Liu, Int. J. Hydrogen Energy 37, 10709 (2012)

    Article  Google Scholar 

  16. A.A. Poletaev, R.V. Denys, J.P. Maehlen, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Int. J. Hydrogen Energy 37, 3548 (2012)

    Article  Google Scholar 

  17. L.Z. Ouyang, Z.J. Cao, L.L. Li, H. Wang, J.W. Liu, D. Min, Y.W. Chen, F.M. Xiao, R.H. Tang, M. Zhu, Int. J. Hydrogen Energy 39, 12765 (2014)

    Article  Google Scholar 

  18. L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys. Chem. C 118, 7808 (2014)

    Article  Google Scholar 

  19. M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Guégan, H. Zarrouk, J. Alloys Compd. 356–357, 557 (2003)

    Article  Google Scholar 

  20. R.V. Denys, A.A. Poletaev, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Acta Mater. 58, 2510 (2010)

    Article  Google Scholar 

  21. A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, Ch. Mickel, N. Mattern, J. Alloys Compd. 398, 156 (2005)

    Article  Google Scholar 

  22. S.P. Wang, W.H. Luo, G. Li, H.B. Li, G.F. Zhang, Acta Metall. Sin. (Engl. Lett.) 54, 1187 (2018)

    Google Scholar 

  23. H. Falahati, D.P.J. Barz, Int. J. Hydrogen Energy 38, 8838 (2013)

    Article  Google Scholar 

  24. L.Z. Ouyang, W. Chen, J.W. Liu, M. Felderhoff, H. Wang, M. Zhu, Adv. Energy Mater. 7, 170029 (2017)

    Google Scholar 

  25. M. Zhu, H. Wang, L.Z. Ouyang, M.Q. Zeng, Int. J. Hydrogen Energy 31, 251 (2006)

    Article  Google Scholar 

  26. W.H. Lai, C.Z. Yu, Battery Bimon. 26, 189 (1996)

    Google Scholar 

  27. Y. Wang, Z.W. Lu, X.P. Gao, W.K. Hu, X.Y. Jiang, J.Q. Qu, P.W. Shen, J. Alloys Compd. 389, 290 (2005)

    Article  Google Scholar 

  28. T. Spassov, L. Lyubenova, U. Köster, M.D. Baró, Mater. Sci. Eng. A 375–377, 794 (2004)

    Article  Google Scholar 

  29. L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Int. J. Hydrogen Energy 38, 8881 (2013)

    Article  Google Scholar 

  30. L.H. Kumar, B. Viswanathan, S.S. Murthy, J. Alloys Compd. 461, 72 (2008)

    Article  Google Scholar 

  31. E.A. Lass, Int. J. Hydrogen Energy 36, 10787 (2011)

    Article  Google Scholar 

  32. M.V. Simičić, M. Zdujić, R. Dimitrijević, L. Nikolić-Bujanović, N.H. Popović, J. Power Sources 158, 730 (2006)

    Article  Google Scholar 

  33. X.Y. Zhao, Y. Ding, L.Q. Ma, L.Y. Wang, M. Yang, X.D. Shen, Int. J. Hydrogen Energy 33, 6727 (2008)

    Article  Google Scholar 

  34. G. Zhang, B.N. Popov, R.E. White, J. Electrochem. Soc. 142, 2695 (1995)

    Article  Google Scholar 

  35. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloys Compd. 202, 183 (1993)

    Article  Google Scholar 

  36. Y.H. Zhang, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J Solid State Electr. 19, 1187 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (Nos. 51761032, 51871125 and 51471054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Huan Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Zhang, KF., Yuan, ZM. et al. Hydrogen Storage Performances of Nanocrystalline and Amorphous NdMg11Ni + x wt% Ni (x = 100, 200) Alloys Synthesized by Mechanical Milling. Acta Metall. Sin. (Engl. Lett.) 32, 1089–1098 (2019). https://doi.org/10.1007/s40195-019-00880-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00880-9

Keywords

Navigation