Skip to main content
Log in

Effect of δ Phase on Microstructure and Hardness of Heat-Affected Zone in TIG-Welded GH4169 Superalloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The GH4169 superalloy with different content of δ-Ni3Nb phase was welded by tungsten inert gas welding. A detailed study of microstructure and hardness of heat-affected zone (HAZ) was performed in both as-welded and aged state. The results show that the precipitation of δ phase, especially the intergranular δ phase, can lead to the enrichment of Nb and Mo elements, which promote the formation of γ/Laves eutectic constituent at grain boundaries in HAZ. In as-welded state, the hardness decreases first and then increases (exhibiting a “V” shape) with distance away from fusion line in HAZ, which is governed by grain size. After aging treatment, however, the γ″ phase plays a key role in hardness and leads to the “Λ” shape profiles of hardness in HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Editorial board of China Aeronautical Materials Handbook, Wrought Superalloy, 2nd edn. (China Standard Press, Beijing, 2002)

    Google Scholar 

  2. A.B. Mostly, Adv. Mater. Sci. Eng. 3, 123 (2011)

    Google Scholar 

  3. X. Xing, X. Di, B. Wang, J. Alloys Compd. 593, 110 (2014)

    Article  Google Scholar 

  4. L.C.M. Valle, S.B. Gabriel, J. Dille, L.H.D. Almeida, J. Mater. Eng. Perform. 22, 1512 (2013)

    Article  Google Scholar 

  5. J. Saarimäki, M.H. Colliander, J.J. Moverare, Mater. Sci. Eng. A 692, 174 (2017)

    Article  Google Scholar 

  6. J.N. Dupont, J.C. Lippold, S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, New Jersey, 2011), pp. 281–284

    Google Scholar 

  7. K. Wang, M.Q. Li, C. Li, Mater. Sci. Technol. 29, 346 (2013)

    Article  Google Scholar 

  8. S.A. Nalawade, M. Sundararaman, J.B. Singh, Mater. Sci. Eng. A 527, 2906 (2010)

    Article  Google Scholar 

  9. J. Andersson, G.P. Sjoberg, L. Viskari, Mater. Sci. Technol. 28, 609 (2012)

    Article  Google Scholar 

  10. J.W. Hooijmans, J.C. Lippold, W. Lin, Superalloys 1997, 721 (1997)

    Google Scholar 

  11. M. Qian, J.C. Lippold, Mater. Sci. Eng. A 340, 225 (2003)

    Article  Google Scholar 

  12. M. Qian, J.C. Lippold, Mater. Sci. Eng. A 456, 147 (2007)

    Article  Google Scholar 

  13. Y. Ning, S. Huang, M.W. Fu, Mater. Charact. 109, 36 (2015)

    Article  Google Scholar 

  14. M. Stockinger, E. Kozeschnik, B. Buchmay, Superalloys 2001, 141 (2001)

    Google Scholar 

  15. C. Silva, M. Song, K. Leonard, Mater. Sci. Eng. A 691, 195 (2017)

    Article  Google Scholar 

  16. F. Liu, Mater. Sci. Forum 748, 760 (2013)

    Article  Google Scholar 

  17. S. Azadian, L.Y. Wei, R. Warren, Mater. Charact. 53, 7 (2004)

    Article  Google Scholar 

  18. W. Liu, F. Xiao, M. Yao, J. Mater. Sci. Lett. 16, 769 (1997)

    Article  Google Scholar 

  19. X. Ye, X.M. Hua, Y.X. Wu, J. Mater. Process. Technol. 217, 13 (2015)

    Article  Google Scholar 

  20. F. Yan, T. Zhan, S. Liu, J. Mech. Sci. Technol. 31, 5459 (2017)

    Article  Google Scholar 

  21. M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Metall. Trans. A 19, 453 (1988)

    Article  Google Scholar 

  22. Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, H. Li, J. Alloys Compd. 649, 949 (2015)

    Article  Google Scholar 

  23. M. Gao, R.P. Wei, Scr. Metall. 32, 987 (1995)

    Article  Google Scholar 

  24. X. Ye, X.M. Hua, M. Wang, J. Mater. Process. Technol. 222, 381 (2015)

    Article  Google Scholar 

  25. X. Di, X. Xing, B. Wang, Acta Metall. 50, 323 (2014)

    Google Scholar 

  26. X.L. Pan, H.Y. Yu, G.F. Tu, Trans. Nonferrous Met. Soc. China 21, 2402 (2011)

    Article  Google Scholar 

  27. G.D.J. Ram, A.V. Reddy, K.P. Rao, Sci. Technol. Weld. Join. 9, 390 (2004)

    Article  Google Scholar 

  28. H. Xiao, S.M. Li, X. Han, Mater. Des. 122, 330 (2017)

    Article  Google Scholar 

  29. W.C. Liu, M. Yao, Z.L. Chen, J. Mater. Sci. 34, 2583 (1999)

    Article  Google Scholar 

  30. K.D. Ramkumar, S. Dev, V. Saxena, Mater. Des. 87, 663 (2015)

    Article  Google Scholar 

  31. K. Saida, Y. Nomoto, H. Okauchi, Sci. Technol. Weld. Join. 17, 1 (2014)

    Article  Google Scholar 

  32. Y. Mei, Y.C. Liu, C.X. Liu, Mater. Des. 89, 964 (2016)

    Article  Google Scholar 

  33. G.M. Reddy, C.V.S. Murthy, K.S. Rao, Int. J. Adv. Manuf. Technol. 43, 671 (2009)

    Article  Google Scholar 

  34. Y. Chen, K. Zhang, J. Huang, Mater. Des. 90, 586 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51774213) and the Regional Demonstration Project of Marine Economic Innovation and Development (No. BHSF2017-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Jie Di.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TF., Di, XJ., Li, CN. et al. Effect of δ Phase on Microstructure and Hardness of Heat-Affected Zone in TIG-Welded GH4169 Superalloy. Acta Metall. Sin. (Engl. Lett.) 32, 1041–1052 (2019). https://doi.org/10.1007/s40195-018-0861-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0861-y

Keywords

Navigation