Skip to main content

Advertisement

Log in

Creep Behavior and Life Assessment of a Novel Heat-Resistant Austenite Steel and Its Weldment

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In the present study, creep activation energy for rupture was obtained as 221–348 kJ/mol for 22Cr15Ni3.5CuNbN due to the precipitation-hardening mechanism. The extrapolation strength of creep rupture time of 105 h at 923 K for 22Cr15Ni3.5CuNbN is more valid (83.71 MPa) predicted by the Manson–Haferd method, which is superior to other commercial heat-resistant steels. The tensile creep tests ranging from 180 to 240 MPa at 923 K were conducted to investigate creep deformation behavior of welded joint between a novel heat-resistant austenite steel 22Cr15Ni3.5CuNbN and ERNiCrCoMo-1 weld metal. Apparent stress exponent value of 6.54 was obtained, which indicated that the rate-controlled creep occurred in weldment during creep. A damage tolerance factor of 6.4 in the weldment illustrates that the microstructural degradation is the dominant creep damaging mechanism in the alloy. Meanwhile, the welded joints perform two types of deformation behavior with the variation in applied stress, which resulted from the different parts that govern the creep processing. Also, the morphology evolution of the fracture surfaces confirms the effects of stress level and stress state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Y. Zhang, Mater. Sci. Eng. A 711, 434 (2018)

    Article  Google Scholar 

  2. Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, Y. Zhao, Mater. Sci. Eng. A 686, 102 (2017)

    Article  Google Scholar 

  3. Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, J. Liang, Mater. Charact. 130, 156 (2017)

    Article  Google Scholar 

  4. H. Yin, Y. Gao, Y. Gu, Mater. Des. 105, 66 (2016)

    Article  Google Scholar 

  5. C. Wang, Y. Guo, J. Guo, L. Zhou, Mater. Des. 88, 790 (2015)

    Article  Google Scholar 

  6. P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu, Mater. Des. 54, 874 (2014)

    Article  Google Scholar 

  7. Y. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, B. Xiao, Mater. Charact. 139, 279 (2018)

    Article  Google Scholar 

  8. X. Xie, C. Chi, H. Yu, J. Dong, M. Zhang, Y. Hu, H. Yang, C. Zhu, H. Yang, C. Zhu, Z. Cui, F. Lin, Research and development of a new austenitic heat- resisting steel SP2215 for 600–620 °C USC boiler superheater/reheater application, in Proceedings from the Eighth International Conference: Advances in Materials Technology for Fossil Power Plants, Electric Power Research Institute, Inc., Albufeira, October 11–14 (2016)

  9. J. Dean, J. Campbell, G. Aldrich-Smith, T.W. Clyne, Acta Mater. 80, 56 (2014)

    Article  Google Scholar 

  10. B. Wilshire, P.J. Scharning, Int. Mater. Rev. 53, 91 (2008)

    Article  Google Scholar 

  11. S. Goyal, K. Laha, Mater. Sci. Eng. A 615, 348 (2014)

    Article  Google Scholar 

  12. T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, Mater. Sci. Eng. A 565, 382 (2013)

    Article  Google Scholar 

  13. T. Sakthivel, S.P. Selvi, K. Laha, Mater. Sci. Eng. A 640, 61 (2015)

    Article  Google Scholar 

  14. J.A. Siefert, S.A. David, Sci. Technol. Weld. Join. 19, 271 (2014)

    Article  Google Scholar 

  15. J.A. Siefert, J.P. Shingledecker, J.N. DuPont, S.A. David, Sci. Technol. Weld. Join. 21, 397 (2016)

    Article  Google Scholar 

  16. W.M. Payten, D.W. Dean, K.U. Snowden, Mater. Sci. Eng. A 527, 1920 (2010)

    Article  Google Scholar 

  17. Y. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, D. Wang, B. Xiao, Mater. Sci. Eng. A 721, 103 (2018)

    Article  Google Scholar 

  18. J.G. Kaufman, Parametric Analyses of High-Temperature Data for Aluminum Alloys (ASM International, Portland, 2008)

    Google Scholar 

  19. D. Šeruga, M. Nagode, Mater. Sci. Eng. A 528, 2804 (2011)

    Article  Google Scholar 

  20. G. Dimmler, P. Weinert, H. Cerjak, Int. J. Pres. Ves. Pip. 85, 55 (2008)

    Article  Google Scholar 

  21. H. Ghassemi Armaki, K. Maruyama, M. Yoshizawa, M. Igarashi, Mater. Sci. Eng. A 490, 66 (2008)

    Article  Google Scholar 

  22. S. Manson, A. Haferd, Technical Report Archive & Image Library (1953)

  23. W. Bendick, L. Cipolla, J. Gabrel, J. Hald, Int. J. Pres. Ves. Pip. 87, 304 (2010)

    Article  Google Scholar 

  24. R. Orr, O. Sherby, J. Dorn, Trans. Am. Soc. Met. 7, 113 (1953)

    Google Scholar 

  25. K. Maruyama, H.G. Armaki, K. Yoshimi, Int. J. Pres. Ves. Pip. 84, 171 (2007)

    Article  Google Scholar 

  26. J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Mater. Sci. Eng. A 428, 270 (2006)

    Article  Google Scholar 

  27. B. Wilshire, A.J. Battenbough, Mater. Sci. Eng. A 443, 156 (2007)

    Article  Google Scholar 

  28. M.T. Whittaker, B. Wilshire, Mater. Sci. Eng. A 527, 4932 (2010)

    Article  Google Scholar 

  29. R.M. Goldhoff (ed.), Development of a Standard Methodology for the Correlation and Extrapolation of Elevated Temperature Creep and Rupture Data, Volume 2: A State-of-the-Art Review, Final Report (Metal Properties Council Inc., New York, 1979)

    Google Scholar 

  30. M.K. Booker (ed.), Development of a Standard Methodology for the Correlation and Extrapolation of Elevated Temperature: A Summary of a State-of-the-Art Review and a Workshop. Final Report (Metal Properties Council, Inc., New York, 1974)

    Google Scholar 

  31. A. Iseda, H. Okada, H. Semba, M. Igarashi, Energy Mater. 2, 199 (2013)

    Article  Google Scholar 

  32. M.S. Pham, S.R. Holdsworth, K.G.F. Janssens, E. Mazza, Int. J. Plast. 47, 143 (2013)

    Article  Google Scholar 

  33. B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Mater. Sci. Eng. A 690, 104 (2017)

    Article  Google Scholar 

  34. B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Z. Tang, Mater. Sci. Eng. A 707, 466 (2017)

    Article  Google Scholar 

  35. M.F. Ashby, B.F. Dyson, Creep damage mechanics and micromechanisms, in Proceedings of the 6th International Conference on Fracture (ICF6), National Aeronautical Laboratory, New Delhi, 4–10 December (1984)

  36. S. Tu, R. Wu, R. Sandström, Int. J. Pres. Ves. Pip. 58, 345 (1994)

    Article  Google Scholar 

  37. S. Tu, R. Sandström, Int. J. Pres. Ves. Pip. 57, 335 (1994)

    Article  Google Scholar 

  38. A.A. Benzerga, J. Leblond, A. Needleman, V. Tvergaard, Int. J. Fract. 201, 29 (2016)

    Article  Google Scholar 

  39. L. Zhao, N. Alang, K. Nikbin, Fatigue Fract. Eng. Mater. 41, 456 (2018)

    Article  Google Scholar 

  40. M.F. Ashby, C. Gandhi, D.M.R. Taplin, in Perspectives in Creep Fracture, ed. by M.F. Ashby, L.M. Brown (Pergamon, Oxford, 1983), p. 699

    Google Scholar 

  41. J. Wen, S. Tu, F. Xuan, X. Zhang, X. Gao, J. Mater. Sci. Technol. 32, 695 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51475326) and the Demonstration Project of National Marine Economic Innovation (No. BHSF2017-22). The authors also wish to acknowledge the supplier of the steel and welded joint: China Jiangsu Wujin Stainless Steel Pipe Group Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Yong Xu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jing, HY., Xu, LY. et al. Creep Behavior and Life Assessment of a Novel Heat-Resistant Austenite Steel and Its Weldment. Acta Metall. Sin. (Engl. Lett.) 32, 638–650 (2019). https://doi.org/10.1007/s40195-018-0822-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0822-5

Keywords

Navigation