Skip to main content
Log in

CO Catalytic Oxidation of Pt-Loaded Perovskite BaTiO3 Near Ferroelectric-Phase Transition Temperature

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Perovskite BaTiO3 (BTO) nanocrystals with a size of 150–200 nm have successfully been synthesized via a facile hydrothermal method by employing titanate nanowires as synthetic precursor. Tetragonality and spontaneous ferroelectric polarization of BTO nanocrystals have been determined by X-ray diffraction and transmission electron microscopy investigations. BTO nanocrystals loaded with Pt nanoparticles in a size of 2–5 nm have been explored as a catalyst towards CO oxidation to CO2. It is interesting to find that CO catalytic conversion rate over Pt-BTO nanocrystals gradually decreased and further increased near 100 °C when the catalytic temperature keeps increasing, whereas the conversion behavior in oxides is expected to be enhanced upon the catalytic temperature grows. Using differential scanning calorimetry and first-principle calculations, the observed catalytic behavior has been discussed on the basis of the ferroelectric polarization effect and the ferroelectric–paraelectric transition of BTO nanocrystals with a Curie temperature of ~ 110 °C. Below Curie temperature, CO catalytic oxidation could be significantly tailored by ferroelectric polarization of BTO nanocrystals via a promoted dissociation of O2 molecules. The findings suggest that a ferroelectric polarization in perovskite oxides could be an alternative way to modify the CO catalytic oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 358, 751 (2017)

    Article  Google Scholar 

  2. R. Shi, G.I.N. Waterhouse, T.R. Zhang, Solar RRL 1, 1700126 (2017)

    Article  Google Scholar 

  3. A. Kakekhani, S. Ismail-Beigi, Phys. Chem. Chem. Phys. 18, 19676 (2016)

    Article  Google Scholar 

  4. R. William, M. Victor, T. Arumugam, M. Pandirengan, R.R. Durairaj, Varimalla. Acta Metall. Sin. 31, 299 (2018). (in Chinese)

    Article  Google Scholar 

  5. M.J. Miah, A.K.M.A. Hossain, Acta Metall. Sin. (Engl. Lett.) 29, 505 (2016)

    Article  Google Scholar 

  6. P.J. Xue, H. Wu, Y. Lu, X.H. Zhu, J. Mater. Sci. Technol. 34, 914 (2018)

    Article  Google Scholar 

  7. L. Shang, Y.H. Liang, M.Z. Li, G.I.N. Waterhouse, P. Tang, D. Ma, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Funct. Mater. 27, 1606215 (2017)

    Article  Google Scholar 

  8. H. Fan, X. Huang, L. Shang, Y. Cao, Y. Zhao, Angew. Chem. Int. Ed. 55, 2167 (2016)

    Article  Google Scholar 

  9. L. Shang, T. Bian, B. Zhang, L.Z. Wu, Angew. Chem. Int. Ed. 126, 254 (2014)

    Article  Google Scholar 

  10. G. Zhao, Y. Liu, Y. Lu, Sci. Bull. 61, 745 (2016)

    Article  Google Scholar 

  11. M.A. Khan, M.A. Nadeem, H. Idriss, Surf. Sci. Rep. 71, 1 (2016)

    Article  Google Scholar 

  12. N.V. Burbure, P.A. Salvador, G.S. Rohrer, Chem. Mater. 21, 5823 (2010)

    Article  Google Scholar 

  13. Y.F. Cui, J. Briscoe, S. Dunn, Chem. Mater. 25, 4215 (2013)

    Article  Google Scholar 

  14. F. Chen, Z.H. Ren, S.Y. Gong, X. Li, G. Shen, G.R. Han, Chem. Eur. J. 22, 12160 (2016)

    Article  Google Scholar 

  15. S. Jiang, R.Y. Zhao, Z.H. Ren, X. Chen, H. Tian, X. Wei, X. Li, G. Shen, G.R. Han, Chem. Select 1, 6020 (2016)

    Google Scholar 

  16. W. Li, F. Wang, M. Li, X. Chen, Z.H. Ren, H. Tian, X. Li, Y.H. Lu, G.R. Han, Nano Energy 45, 304 (2018)

    Article  Google Scholar 

  17. A.M. Kolpak, I. Grinberg, A.M. Rappe, Phys. Rev. Lett. 98, 166101 (2007)

    Article  Google Scholar 

  18. A. Kakekhani, S. Ismail-Beigi, ACS Catal. 5, 4537 (2015)

    Article  Google Scholar 

  19. Y. Inoue, I. Yoshioka, K. Sato, J. Phys. Chem. 7, 4417 (1984)

    Google Scholar 

  20. C.Y. Chao, Z.H. Ren, Y.H. Zhu, Z. Xiao, Z.Y. Liu, G. Xu, J.Q. Mai, X. Li, G. Shen, G.R. Han, Angew. Chem. Int. Ed. 51, 9283 (2012)

    Article  Google Scholar 

  21. S.M. Yin, Y.H. Zhu, Z.H. Ren, C.Y. Chao, X. Li, X. Wei, G. Shen, G.R. Han, J. Mater. Chem. A 24, 9035 (2014)

    Article  Google Scholar 

  22. S.M. Yin, J.J. Duanmu, Y.H. Zhu, Y.F. Yuan, S.Y. Guo, J.L. Yang, Z.H. Ren, G.R. Han, RSC Adv. 7, 6102 (2017)

    Article  Google Scholar 

  23. A.M. Glazer, S.A. Mabud, Acta Crystallogr., Sect. B 34, 1065 (1978)

    Article  Google Scholar 

  24. J.G. Bergman, A. Ashkin, A.A. Ballman, J.M. Dziedzic, H.J. Levinstein, R.G. Smith, Appl. Phys. Lett. 12, 92 (1968)

    Article  Google Scholar 

  25. C.Y. Chao, Z.H. Ren, S.M. Yin, S.Y. Gong, X. Yang, G. Xu, X. Li, G. Shen, G.R. Han, Cryst. Eng. Commun. 15, 8036 (2013)

    Article  Google Scholar 

  26. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  27. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  29. J. Neugebauer, M. Scheffler, Phys. Rev. B 46, 16067 (1992)

    Article  Google Scholar 

  30. X. Yang, D. Li, Z.H. Ren, R.G. Zeng, S.Y. Gong, D.K. Zhou, H. Tian, J.X. Li, G. Xu, Z.J. Shen, G.R. Han, RSC Adv. 6, 75422 (2016)

    Article  Google Scholar 

  31. R. Mohammadpour, A. Irajizad, N. Taghavinia, M. Rahman, M.M. Ahadian, J. Mater. Sci. Technol. 26, 535 (2010)

    Article  Google Scholar 

  32. N. Li, S. Tang, X. Meng, J. Mater. Sci. Technol. 31, 30 (2015)

    Article  Google Scholar 

  33. H. He, P. Yang, J. Li, R. Shi, L. Chen, A. Zhang, Y. Zhu, Ceram. Int. 42, 7810 (2016)

    Article  Google Scholar 

  34. A. Arango-Diaz, J.A. Cecilia, J. Marrero-Jerez, P. Nuñez, J. Jiménez-Jiménez, E. Rodríguez-Castellón, Ceram. Int. 42, 7462 (2016)

    Article  Google Scholar 

  35. A.D. Allian, K. Takanabe, K.L. Fujdala, X.H. Hao, T.J. Truex, J. Cai, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 133, 4498 (2011)

    Article  Google Scholar 

  36. S. Ladas, H. Poppa, M. Boudart, Surf. Sci. 102, 151 (1981)

    Article  Google Scholar 

  37. S.H. Oh, C.C. Eickel, J. Catal. 128, 526 (1991)

    Article  Google Scholar 

  38. T. Zambelli, J.V. Barth, J. Wintterlin, G. Ertl, Nature 390, 495 (1997)

    Article  Google Scholar 

  39. J.T. Roberts, C.M. Friend, J. Phys. Chem. B 92, 5205 (1988)

    Article  Google Scholar 

  40. R.H. Nibbelke, M.A.J. Campman, J.H.B.J. Hoebink, G.B. Marin, J. Catal. 171, 358 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51602286, 51472218, 51302247, 51232006, and 21102212), the Science Foundation of Zhejiang Sci-Tech University (No. 15022084-Y), and the Natural Science Foundation of Zhejiang province (No. LY18E010004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Ren.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, SM., Duanmu, JJ., Yuan, YF. et al. CO Catalytic Oxidation of Pt-Loaded Perovskite BaTiO3 Near Ferroelectric-Phase Transition Temperature. Acta Metall. Sin. (Engl. Lett.) 31, 1031–1037 (2018). https://doi.org/10.1007/s40195-018-0757-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0757-x

Keywords

Navigation