Skip to main content
Log in

Microstructure and Properties of the Cr–Si–N Coatings Deposited by Combining High-Power Impulse Magnetron Sputtering (HiPIMS) and Pulsed DC Magnetron Sputtering

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target. By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found. With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness. The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.Y. Guan, Y.X. Wang, G.A. Zhang, X. Jiang, L.P. Wang, Q.J. Xue, Tribol. Int. 106, 78 (2017)

    Article  Google Scholar 

  2. Q.X. Fan, T.G. Wang, Y.M. Liu, Z.H. Wu, T. Zhang, T. Li, Z.B. Yang, Acta Metall. Sin. (Engl. Lett.) 29, 1119 (2016)

    Article  Google Scholar 

  3. X.S. Wan, S.S. Zhao, Y. Yang, J. Gong, C. Sun, Surf. Coat. Technol. 204, 1800 (2010)

    Article  Google Scholar 

  4. Y.X. Ou, J. Lin, H.L. Che, J.J. Moore, W.D. Sproul, M.K. Lei, Thin Solid Film 594, 147 (2015)

    Article  Google Scholar 

  5. L. Shan, Y.X. Wang, J.L. Li, X. Jiang, J.M. Chen, Tribol. Int. 82, 78 (2015)

    Article  Google Scholar 

  6. A. Gilewicz, P. Chmielewska, D. Murzynski, E. Dobruchowska, B. Warcholinski, Surf. Coat. Technol. 299, 7 (2016)

    Article  Google Scholar 

  7. Z.T. Wu, Z.B. Qi, D.F. Zhang, B.B. Wei, Z.C. Wang, Surf. Coat. Technol. 289, 45 (2016)

    Article  Google Scholar 

  8. J.J. Roa, E. Jiménez-Piqué, R. Martínez, G. Ramírez, J.M. Tarragó, R. Rodríguez, L. Llanes, Thin Solid Film 571, 308 (2014)

    Article  Google Scholar 

  9. Q.M. Wang, K.H. Kim, Acta Mater. 57, 4974 (2009)

    Article  Google Scholar 

  10. J.L. Lin, B. Wang, Y.X. Ou, W.D. Sproul, I. Dahan, J.J. Moore, Surf. Coat. Technol. 216, 251 (2013)

    Article  Google Scholar 

  11. Q.Z. Wang, F. Zhou, M. Callisti, T. Polcar, J.Z. Kong, J.W. Yan, J. Alloy. Compd. 708, 1103 (2017)

    Article  Google Scholar 

  12. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Thin Solid Films 476, 1 (2005)

    Article  Google Scholar 

  13. P. Souček, J. Daniel, J. Hnilica, K. Bernátová, L. Zábranský, V. Buršíková, M. Stupavská, P. Vašina, Surf. Coat. Technol. 311, 257 (2017)

    Article  Google Scholar 

  14. Q.S. Ma, L.H. Li, Y. Xu, J.B. Gu, L. Wang, Y. Xu, Appl. Surf. Sci. 392, 826 (2017)

    Article  Google Scholar 

  15. T. Konishi, K. Yukimura, K. Takaki, Surf. Coat. Technol. 286, 239 (2016)

    Article  Google Scholar 

  16. A. Anders, Surf. Coat. Technol. 257, 308 (2014)

    Article  Google Scholar 

  17. I.L. Velicu, V. Tiron, G. Popa, Surf. Coat. Technol. 250, 57 (2014)

    Article  Google Scholar 

  18. L.D. Giudice, S. Adjam, D.L. Grange, O. Banakh, A. Karimi, R. Sanjinés, Surf. Coat. Technol. 295, 99 (2016)

    Article  Google Scholar 

  19. H. Zhou, J. Zheng, B.H. Gui, D.S. Geng, Q.M. Wang, Vacuum 129, 191 (2017)

    Google Scholar 

  20. T.G. Wang, S.S. Zhao, W.G. Hua, J.B. Li, J. Gong, C. Sun, Mater. Sci. Eng., A 527, 454 (2010)

    Article  Google Scholar 

  21. J.F. Archard, J. Appl. Phys. 24, 981 (1953)

    Article  Google Scholar 

  22. L.L. Huang, C.W. Zou, W. Xie, F. Peng, L.X. Shao, Ceram. Int. 42, 5062 (2016)

    Article  Google Scholar 

  23. T.G. Wang, Y.M. Liu, T.F. Zhang, D.I. Kim, K.H. Kim, J. Mater. Sci. Technol. 28, 981 (2012)

    Article  Google Scholar 

  24. M. Balzer, M. Fenker, Surf. Coat. Technol. 250, 37 (2014)

    Article  Google Scholar 

  25. S. Veprek, M.G.J. Veprek-Heijman, Surf. Coat. Technol. 201, 6064 (2007)

    Article  Google Scholar 

  26. S. Veprek, J. Vac. Sci. Technol. 31, 050822 (2013)

    Article  Google Scholar 

  27. C.C. Chang, H.W. Chen, J.W. Lee, J.G. Duh, Surf. Coat. Technol. 284, 273 (2015)

    Article  Google Scholar 

  28. S. Veprek, S. Reiprich, L. Shizhi, Appl. Phys. Lett. 66, 2640 (1995)

    Article  Google Scholar 

  29. A. Lasalmonie, J.L. Strudel, J. Mater. Sci. 21, 1837 (1986)

    Article  Google Scholar 

  30. S. Liu, R. Raghavan, X.T. Zeng, J. Michler, Appl. Phys. Lett. 104, 081919 (2014)

    Article  Google Scholar 

  31. C.C. Chang, H.S. Chen, J.W. Lee, J.G. Duh, Thin Solid Films 584, 46 (2015)

    Article  Google Scholar 

  32. P. Bansal, P.H. Shipway, S.B. Leen, Acta Mater. 55, 5089 (2007)

    Article  Google Scholar 

  33. R. Gadow, M.J. Riegert-Escribano, M. Buchmann, J. Therm. Spray Technol. 14, 100 (2005)

    Article  Google Scholar 

  34. V.V. Le, T.T. Nguyen, S.K. Kim, K.H. Pham, Surf. Coat. Technol. 218, 87 (2013)

    Article  Google Scholar 

  35. T.G. Wang, D. Jeong, Y.M. Liu, Q.M. Wang, S. Iyengar, S. Melin, K.H. Kim, Surf. Coat. Technol. 206, 2638 (2012)

    Article  Google Scholar 

  36. R. Bajwa, Z. Khan, H. Nazir, V. Chacko, A. Saeed, Acta Metall. Sin. (Engl. Lett.) 29, 902 (2016)

    Article  Google Scholar 

  37. T. Polcar, A. Cavaleiro, Surf. Coat. Technol. 206, 1244 (2011)

    Article  Google Scholar 

  38. Y.S. Hong, S.H. Kwon, T.G. Wang, D.I. Kim, J. Choi, K.H. Kim, Trans. Nonferrous Met. Soc. China 21, s62 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2013M3A6B1078874). In addition, it was also funded by the National Nature Science Foundation of China (No. 51301181), the Tianjin Key Research Program of Application Foundation and Advanced Technology (No. 15JCZDJC39700), the Tianjin Science and Technology correspondent project (No. 16JCTPJC49500), and the Innovation Team Training Plan of Tianjin Universities and colleges (No. TD12-5043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tie-Gang Wang or Kwang Ho Kim.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TG., Dong, Y., Gebrekidan, B.A. et al. Microstructure and Properties of the Cr–Si–N Coatings Deposited by Combining High-Power Impulse Magnetron Sputtering (HiPIMS) and Pulsed DC Magnetron Sputtering. Acta Metall. Sin. (Engl. Lett.) 30, 688–696 (2017). https://doi.org/10.1007/s40195-017-0609-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0609-0

Keywords

Navigation