Skip to main content
Log in

Influence of Deformation Degree and Cooling Rate on Microstructure and Phase Transformation Temperature of B1500HS Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

To study the effects of the deformation degree and cooling rate on the microstructure and phase transformation temperature for the B1500HS steel, the samples were heated at 900 °C for 5 min, compressed by 10, 20, 30 and 40% at the strain rate of 0.1 s−1, and then cooled down at the rates of 50, 40, 25, 20 and 15 °C/s by the thermo-mechanical simulator, respectively. The start and finish temperatures of the phase transformation were determined by the tangent method, and the volume fraction of the phase transformation was ascertained by the level principle according to the dilatometric curves. The volume fraction of the retained austenite was determined by X-ray diffraction. The results show that the volume fraction of the bainite rises with an increase in the deformation degree as the cooling rate is lower than the critical rate. At the same cooling rate, the phase transformation temperature rises with an increase in the deformation degree, and the sizes of both the martensite and bainite phases reduce due to the austenite grain refinement induced by the deformation. The volume fraction of the retained austenite reduces as the deformation degree increases. The critical cooling rate of the un-deformed samples is approximately 25 °C/s and the critical cooling rate rises as the deformation degree increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L. Komgrit, H. Hamasaki, R. Hino, F. Yoshida, Elimination of springback of high-strength steel sheet by using additional bending with counter punch. J. Mater. Process. Technol. 229, 199–206 (2016). doi:10.1016/j.jmatprotec.2015.08.029

    Article  Google Scholar 

  2. H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Technol. 210, 2103–2118 (2010). doi:10.1016/j.jmatprotec.2010.07.019

    Article  Google Scholar 

  3. J. Min, J. Lin, J. Li, W. Bao, Investigation on hot forming limits of high strength steel 22MnB5. Comput. Mater. Sci. 49, 326–332 (2010). doi:10.1016/j.commatsci.2010.05.018

    Article  Google Scholar 

  4. H. Li, L. He, G. Zhao, L. Zhang, Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson–Cook model. Mater. Sci. Eng., A 580, 330–348 (2013). doi:10.1063/1.4806961

    Article  Google Scholar 

  5. H. Li, C. Wang, L. He, C. Zhang, Effect of heating and mold temperature on the mechanical properties and microstructure of B1500HS boron steel. Mater. Perform. Charact. 6(1), 17–32 (2017). doi:10.1520/MPC20160108

    Google Scholar 

  6. M. Merklein, J. Lechler, T. Stoehr, Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping. Int. J. Mater. Form. 2, 259–262 (2009). doi:10.1007/s12289-009-0505-x

    Article  Google Scholar 

  7. J. Cui, G. Sun, J. Xu, X. Huang, G. Li, A method to evaluate the formability of high-strength steel in hot stamping. Mater. Des. 77, 95–109 (2015). doi:10.1016/j.matdes.2015.04.009

    Article  Google Scholar 

  8. P. Hein, J. Wilsius, Status and innovation trends in hot stamping of USIBOR 1500P. Steel Res. Int. 79, 85–91 (2008). doi:10.1002/srin.200806321

    Article  Google Scholar 

  9. M. Maikranz-Valentin, U. Weidig, U. Schoof, H.H. Becker, K. Steinhoff, Components with optimised properties due to advanced thermomechanical process strategies in hot sheet metal forming. Steel Res. Int. 79, 92–97 (2008). doi:10.1002/srin.200806322

    Article  Google Scholar 

  10. H. Li, L. He, C. Zhang, H. Cui, Research on the effect of boundary pressure on the boundary heat transfer coefficients between hot stamping die and boron steel. Int. J. Heat Mass Trans. 91, 401–415 (2015). doi:10.1016/j.ijheatmasstransfer.2015.07.102

    Article  Google Scholar 

  11. S. Denis, E. Gautier, A. Simon, G. Beck, Stress-phase-transformation interactions-basic principles, modelling and calculation of internal stresses. Mater. Sci. Technol. 1, 805–814 (1985). doi:10.1179/mst.1985.1.10.805

    Article  Google Scholar 

  12. A. Barcellona, D. Palmeri, Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel. Metall. Mater. Trans. A 40, 1160–1174 (2009). doi:10.1007/s11661-009-9790-8

    Article  Google Scholar 

  13. M. Naderi, W. Bleck, An investigation into martensitic transformation in hot stamping process. WIT Trans. Eng. Sci. 57, 95–104 (2007). doi:10.2495/MC070101

    Google Scholar 

  14. M. Nikravesh, M. Naderi, G.H. Akbari, Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Mater. Sci. Eng., A 540, 24–29 (2012). doi:10.1016/j.msea.2012.01.018

    Article  Google Scholar 

  15. A.J. Craven, K. He, L.A.J. Garvie, T.N. Baker, Complex heterogeneous precipitation in titanium–niobium microalloyed Al-killed HSLA steels—I. (Ti, Nb)(C, N) particles. Acta Mater. 48, 3857–3868 (2000). doi:10.1016/S1359-6454(00)00194-4

    Article  Google Scholar 

  16. J.D. Verhoeven (ed.), Steel Metallurgy for the Non-metallurgist (ASM International, Novelty, 2007)

    Google Scholar 

  17. K.F. Starodubov, Heat treatment of low carbon steel. Metal Sci. Heat Treat. 7, 453–454 (1966)

    Article  Google Scholar 

  18. S. Morito, Y. Adachi, T. Ohba, Morphology and crystallography of sub-blocks in ultra-low carbon lath martensite steel. Mater. Trans. 50, 1919–1923 (2009). doi:10.2320/matertrans.mra2008409

    Article  Google Scholar 

  19. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323–5331 (2006). doi:10.1016/j.actamat.2006.07.009

    Article  Google Scholar 

  20. P.M. Kelly, A. Jostsons, R.G. Blake, The orientation relationship between lath martensite and austenite in low carbon, low alloy steels. Acta Metall. Mater. 38, 1075–1081 (1990). doi:10.1016/0956-7151(90)90180-O

    Article  Google Scholar 

  21. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe–C alloys. Acta Mater. 51, 1789–1799 (2003). doi:10.1016/S1359-6454(02)00577-3

    Article  Google Scholar 

  22. H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, Y. Minaminoa, Crystallographic analysis of plate martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD. Mater. Charact. 54, 378–386 (2005). doi:10.1016/j.matchar.2004.12.015

    Article  Google Scholar 

  23. S. Morito, H. Yoshida, T. Maki, X. Huang, Effect of block size on the strength of lath martensite in low carbon steels. Mater. Sci. Eng., A 438, 237–240 (2006). doi:10.1016/j.msea.2005.12.048

    Article  Google Scholar 

  24. Y.L. Zhao, J. Shi, W.Q. Cao, M.Q. Wang, G. Xie, Effect of direct quenching on microstructure and mechanical properties of medium-carbon Nb-bearing steel. J. Zhejiang Univ. Sci. A 11, 776–781 (2010). doi:10.1631/jzus.A1000147

    Article  Google Scholar 

  25. K.S. Kim, L.X. Du, C.R. Gao, Influence of vanadium content on bainitic transformation of a low-carbon boron steel during continuous cooling. Acta Metall. Sin. 28, 692–698 (2015). doi:10.1007/s40195-015-0249-1

    Article  Google Scholar 

  26. D.Q. Bai, S. Yue, T.M. Maccagno, J.J. Jomas, Effect of deformation and cooling rate on the microstructures of low carbon Nb-B steels. ISIJ Int. 38, 371–379 (1998). doi:10.2355/isijinternational.38.371

    Article  Google Scholar 

  27. H. Li, K. Gai, L. He, C. Zhang, H. Cui, M. Li, Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson–Mehl–Avrami equation. Mater. Des. 92(731–741), 2015 (2016). doi:10.1016/j.matdes.12.110

    Google Scholar 

  28. P. Maynier, J. Dollet, P. Bastien, Hardenability Concepts with Applications to Steels (AIME, New York, 1978), pp. 518–544

    Google Scholar 

  29. H. Li, G. Zhao, S. Niu, C. Huang, FEM simulation of quenching process and experimental verification of simulation results. Mater. Sci. Eng., A 452–453, 705–714 (2007). doi:10.1016/j.msea.2006.11.023

    Google Scholar 

  30. M. Abbasi, M. Naderi, A. Saeed-Akbari, Isothermal versus non-isothermal hot compression process: a comparative study on phase transformations and structure–property relationships. Mater. Des. 45, 1–5 (2013). doi:10.1016/j.matdes.2012.08.062

    Article  Google Scholar 

  31. M. Abbasi, A. Saeed-Akbari, M. Naderi, The effect of strain rate and deformation temperature on the characteristics of isothermally hot compressed boron-alloyed steel. Mater. Sci. Eng., A 538, 356–363 (2012). doi:10.1016/j.msea.2012.01.060

    Article  Google Scholar 

  32. J. Min, J. Lin, Y. Min, Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels. J. Mater. Process. Technol. 213, 818–825 (2013). doi:10.1016/j.jmatprotec.2012.12.012

    Article  Google Scholar 

  33. R.M. Wu, W. Li, C.L. Wang et al., Stability of retained austenite through a combined intercritical annealing and quenching and partitioning (IAQP) treatment. Acta Metall. Sin. 28, 386–393 (2015). doi:10.1007/s40195-015-0217-9

    Article  Google Scholar 

  34. N.R.V. Bangaru, A.K. Sachdev, Influence of cooling rate on the microstructure and retained austenite in an intercritically annealed vanadium containing HSLA steel. Metall. Mater. Trans. A 13, 1899–1906 (1982). doi:10.1007/BF02645933

    Article  Google Scholar 

  35. H.B. Ryu, J.G. Speer, J.P. Wise, Effect of thermomechanical processing on the retained austenite content in a Si–Mn transformation-induced-plasticity steel. Metall. Mater. Trans. A 33, 2811–2816 (2002). doi:10.1007/s11661-002-0266-3

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51175302, 51575324), and the Science and Technology Development Program of Shandong and Huangdao (Nos. 2014GGX103024, 20140132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Ping Li or Lian-Fang He.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HP., Jiang, R., He, LF. et al. Influence of Deformation Degree and Cooling Rate on Microstructure and Phase Transformation Temperature of B1500HS Steel. Acta Metall. Sin. (Engl. Lett.) 31, 33–47 (2018). https://doi.org/10.1007/s40195-017-0594-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0594-3

Keywords

Navigation